Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Collagen and single-stranded DNA (ssDNA) complex to self-assemble into fibers depending on the length of the ssDNA and the relative amounts of collagen and ssDNA in solution. We report for the first time that when monodisperse, random sequences of ssDNA in the range of 15-90 nucleotides and type I collagen were mixed together at room temperature, fibers several tens of micrometers in length and as large as 10 μm in diameter were formed. Fiber formation was rapid and spontaneous, requiring no further treatment after mixing. Most notably, more ssDNA oligomers were incorporated into the fibers formed using shorter ssDNA oligomers. Endothelial cells formed angiogenic-like structures using the fibers with elevated expression of von Willebrand factor for cells in direct contact with the fibers. These fibers open the door to future applications in the administration and functionality of ssDNA and collagen.Photodynamic therapy (PDT) presents an alternative noninvasive therapeutic modality for the treatment of cancer and other diseases. PDT relies on cytotoxic singlet oxygen (reactive oxygen species or ROS) that is locally generated through energy transfer between a photosensitizer (PS) and molecularly dissolved triplet oxygen. While a number of nanoparticle-based PS vehicles have been described, because of their beneficial and proven biodistribution and pharmacokinetic profiles, ultrasmall nanoparticles with diameters below 10 nm are particularly promising. Here, we investigate two different particle designs deviating from ultrasmall poly(ethylene glycol)-coated (PEGylated) fluorescent core-shell silica nanoparticles referred to as Cornell prime dots (C' dots) by replacing the fluorescent dye with a photosensitizer (psC' dots), here the methylene blue (MB) derivate MB2. In the first approach (design 1), MB2 is encapsulated into the matrix of the silica core, while in the second approach (design 2), MB2 is grafted onto the silica core surface in between chains of the sterically stabilizing poly(ethylene glycol) (PEG) corona. We compare both cases with regard to their singlet oxygen quantum yields, ΦΔ, with the effective ΦΔeff per particle reaching 111 ± 3 and 161 ± 5% for designs 1 and 2, respectively, substantially exceeding single MB2 molecule performance. Encapsulation significantly improves PS photostability, while surface conjugation diminishes it, relative to free MB2. Finally, we show that both particle designs allow functionalization with a targeting peptide, cyclo(Arg-Gly-Asp-D-Tyr-Cys) [c(RGDyC)]. Results suggest that psC' dots are a promising targeted platform for PDT applications, e.g. in oncology, that may combine colloidal stability, efficient renal clearance limiting off-target accumulation, targeted delivery to sites of disease, and effective ROS generation maximizing therapeutic efficacy.Injectable hydrogels have become increasingly important in the fields of tissue engineering and drug delivery. However, their biological applications are greatly limited by the weak mechanics and poor stability under a physiological environment. Herein, we developed a stable, strong, and injectable hydrogel by linking strong micelle cross-linking with tetra-armed PEG. This dual cross-linking strategy has not only made hydrogels nonswelling but also maintained the relative integrity of the gel network during the degradation process, both of which work together to ensure the mechanical strength and stability of our hydrogel under a physiological environment. A compressive stress of 40 MPa was achieved at 95% strain, and the mechanical properties could remain stable even after immersion into a physiological environment for two months. Besides, it also showed outstanding antifatigue properties, good tissue adhesion, and good cytocompatibility. On the basis of these characteristics, these dual cross-linking injectable hydrogels would find appealing application in biomedicine especially for the repair of load-bearing soft tissues.The efficiency of drugs often hinges on drug carriers. To effectively transport therapeutic plant molecules, drug delivery carriers should be able to carry large doses of therapeutic drugs, enable their sustained release, and maintain their biological activity. Here, graphene oxide (GO) is demonstrated to be a valid carrier for delivering therapeutic plant molecules. Salvianolic acid B (SB), which contains a large number of hydroxyl groups, bound to the carboxyl groups of GO by self-assembly. TGF-beta inhibitor clinical trial Silk fibroin (SF) substrates were combined with functionalized GO through the freeze-drying method. SF/GO scaffolds could be loaded with large doses of SB, maintain the biological activity of SB while continuously releasing SB, and significantly promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). SF/GO/SB also dramatically enhanced endothelial cell (EA-hy9.26) migration and tubulogenesis in vitro. Eight weeks after implantation of SF/GO/SB scaffolds in a rat cranial defect model, the defect area showed more new bone and angiogenesis than that following SF and SF/GO scaffold implantation. Therefore, GO is an effective sustained-release carrier for therapeutic plant molecules, such as SB, which can repair bone defects by promoting osteogenic differentiation and angiogenesis.A cancer vaccine is a promising immunotherapy modality, but the heterogenicity of tumors and substantial time and costs required in tumor-associated antigen (TAA) screening have hindered the development of an individualized vaccine. Herein, we propose in situ vaccination using cancer-targetable pH-sensitive zinc-based immunomodulators (CZIs) to elicit antitumor immune response against TAAs of patients' tumors without the ex vivo identification processes. In the tumor microenvironment, CZIs promote the release of large amounts of TAAs and exposure of calreticulin on the cell surface via immunogenic cell death through the combined effect of excess zinc ions and photodynamic therapy (PDT). With these properties, CZIs potentiate antitumor immunity and inhibit tumor growth as well as lung metastasis in CT26 tumor-bearing mice. This nanoplatform may suggest an alternative therapeutic strategy to overcoming the limitations of existing cancer vaccines and may broaden the application of nanoparticles for cancer immunotherapy.
Homepage: https://www.selleckchem.com/TGF-beta.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team