Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Many studies have demonstrated the effectiveness of algicidal compounds produced by macrophytes against microalgae. The aim of this study was to assess the algicidal activity of seven Moroccan macrophyte ethyl acetate extracts (MEA) to control harmful algal blooms (HABs). The response and sensitivity of prokaryotic toxic cyanobacteria (Microcystis aeruginosa) and eukaryotic microalgae (Chlorella sp.) were highlighted. The algicidal effect of MEA extracts against the two microalgae was assessed using both the paper disc diffusion and microdilution methods. This last was used in order to evaluate the minimum inhibitory concentrations (MIC) and minimum algicidal concentrations (MAC). Results showed that the growth of both microalgae was significantly inhibited by all MEA extracts. Myriophyllum spicatum organic extract shows the highest growth inhibition activity against M. aeruginosa (35.33 ± 1.53) and Chlorella sp. (30.33 ± 1.15 mm). This stronger inhibitory activity was confirmed by the low MIC (6.25, 12.5 mg/L) and MAC (6.25, 12.5 mg/L) values. Furthermore, results showed different sensitivity between the prokaryotic and eukaryotic microalgae into MEA extracts. Based on the MIC and MAC values, we can distinguish two groups of plants. The first one, including M. spicatum, Ranunculus aquatilis, and Enteromorpha sp., can be considered as a preferable anti-prokaryotic group with a stronger inhibitory activity on M. aeruginosa growth. The second group, constituted by Potamogeton natans, Nasturtium officinale, Elodea sp., and Ceratophyllum sp., has a preferable and stronger inhibitory effect against eukaryotic algae (Chlorella sp.). Overall the results reveal the potential algicidal activity of macrophytes and suggested that MEA extracts could play an important role in biocontrol of HABs.In recent years, the impact of ultrafine nanomaterials on the aquatic organisms and their ecosystems contributed much concern due to their abundance in environment. I-191 Several toxicity studies have reported that nanoparticles induced reproductive stress and resulted in reproductive impairment of fishes. The present study was aimed to investigate the stress-induced toxicity of C60 fullerene nanomaterial on various reproductive parameters of the freshwater fish, Anabas testudineus. Fish were exposed to two sublethal concentrations of fullerene C60, one-tenth (5 mg/L) and one-fifth (10 mg/L) of LC50-96 h, for 4, 7, 15, 30, and 60-day durations. At the end of exposure period, the activities of steroidogenic enzymes, 3β-, and 17β-hydroxysteroid dehydrogenase decreased in the testis and ovary thereby indicated that the nanomaterial affected gonadal steroidogenesis. The level of serum testosterone decreased significantly (p less then 0.05) in male whereas the level of estradiol showed significant (p less then 0.05) reduction in female fish with significant (p less then 0.05) increase in the level of serum cortisol in both sexes in concentration- and time-dependent manner. The analysis of the levels of alkali-labile phosphates, plasma calcium, and total protein showed significant (p less then 0.05) reduction in female fish without significant changes in male fish, and this could be due to the antiestrogenic action of fullerene C60 nanomaterial. The activity of aromatase enzyme decreased significantly (p less then 0.05) in the ovary and brain of female fish, and the decline in the enzyme activity was prominent only in the brain tissue of male fish. The present results suggested that the stress-induced by fullerene C60 exposure provoked reproductive toxicity in the fish, Anabas testudineus.Emerging economies are mostly plague by a massive consumption of non-renewable energy amidst an ever inceasing urbanization rate with little or no attention to the quality of the environmental. As such, this paper investigates the relationship between renewable energy, urbanization, economic growth, trade openness, and ecological footprint in CIVETS countries, namely, Colombia, Indonesia, Vietnam, Egypt, Turkey, and South Africa. The study employs augmented mean group estimator, panel cointegration, and causality tests. The findings reveal that renewable energy improves environmental quality, and trade is not particularly harmful to the environment. However, non-renewable energy consumption and urbanization are the chief contributors to environmental degradation in the CIVETS countries. Economic expansion mitigates environmental deterioration in Colombia, South Africa, and Turkey, but contributes to pollution in Egypt, Indonesia, and Vietnam. Finally, the causality test suggests that urbanization drives environmental degradation. Policy directions are discussed.Emission inventories are one of the most critical inputs for the successful modeling of air quality. The performance of the modeling results is directly affected by the quality of atmospheric emission inventories. Consequently, the development of representative inventories is always required. Due to the lack of regional inventories in Brazil, this study aimed to investigate the use of the particulate matter (PM) emission estimation from the Brazilian top-down vehicle emission inventory (VEI) of 2012 for air quality modeling. Here, we focus on road vehicles since they are usually responsible for significant emissions of PM in urban areas. The total Brazilian emission of PM (63,000 t year-1) from vehicular sources was distributed into the urban areas of 5557 municipalities, with 1-km2 grid spacing, considering two approaches (i) population and (ii) fleet of each city. A comparison with some local inventories is discussed. The inventory was compiled in the PREP-CHEM-SRC processor tool. One-month modeling (Augustas. Furthermore, the use of VEI can be representative for modeling air quality in the future.Some phthalates, which are used mainly as plasticizers, are suspected to be endocrine disruptors. In the present study, daily intakes of phthalates by Japanese children through all exposure pathways and the contribution of indoor air quality to the intakes were examined by measuring urinary phthalate metabolites in the children and the airborne phthalates in their residences. Spot urine samples excreted first after waking up in the morning were collected from the subjects aged 6 to 15 years (n = 132), and airborne phthalates were sampled in the subjects' bedrooms for 24 h. Eight airborne phthalates and their urinary metabolites were determined by gas chromatography/mass spectrometry. The daily intakes of the phthalates estimated were as follows (median, μg/kg b.w./day) dimethyl phthalate (DMP), 0.15; diethyl phthalate (DEP), 0.42; diisobutyl phthalate (DiBP), 1.1; di-n-butyl phthalate (DnBP), 2.2; dicyclohexyl phthalate (DcHP), 0.026; benzylbutyl phthalate (BBzP), 0.032; di(2-ethylhexyl) phthalate (DEHP), 6.3.
Here's my website: https://www.selleckchem.com/products/i-191.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team