Notes
Notes - notes.io |
P less then 0.05 was considered significant. There were no differences in obstetric or neonatal outcomes between the SARS-CoV-2 positive and negative cohorts. Most SARS-CoV-2 positive patients were asymptomatic on admission. The rates of maternal comorbidities were similar in the SARS-CoV-2 positive and negative groups. In this predominantly Black population in Brooklyn, SARS-CoV-2 infection did not confer increased risk of adverse obstetric or neonatal outcomes, despite the prevalence of comorbidities. The impact of SARS-CoV-2 infection on pregnancy outcomes is complex and may differ on a community level. Determining how COVID-19 is associated with perinatal outcomes in this minoritized patient population will augment our understanding of health disparities in order to improve care.Little is known about what uncertainties patients experience after being identified to carry a pathogenic variant in a moderate-risk cancer gene as a result of undergoing multigene panel testing for cancer susceptibility. Data regarding cancer risk estimates and effectiveness of risk management strategies for these variants continues to evolve, which has the potential to evoke uncertainty. Acknowledging uncertainty during pre- and post-test discussions is imperative to helping individuals to adapt to their results. A better understanding of this population's experience of uncertainty is needed to facilitate such discussions and is the aim of the current study. Semi-structured interviews (30-60 min in length), informed by Han and colleagues' taxonomy of uncertainty in clinical genomic sequencing, were conducted to assess motivations to pursue genetic testing, areas of perceived uncertainty, and strategies for managing uncertainty among 20 carriers of pathogenic variants in two moderate-risk genes, ATM and CHEK2. We found that participants pursue genetic testing with the expectation that results will clarify cancer risks and approaches to management. Participants experience uncertainties aligning with Han's taxonomy relating to the ambiguity of specific cancer risk estimates and effectiveness of certain risk management strategies. These uncertainties influenced decisions around the uptake of risk management strategies, which were additionally impacted by clinicians' uncertainty towards such strategies. Participants employ a variety of uncertainty management approaches to cope with their anxieties. Clinicians may wish to use these findings to facilitate patient adaptation to the implications of multigene panel testing for cancer susceptibility during both pre- and post-test counseling sessions.
Injuries are common in sports and can have significant physical, psychological and financial consequences. Machine learning (ML) methods could be used to improve injury prediction and allow proper approaches to injury prevention. The aim of our study was therefore to perform a systematic review of ML methods in sport injury prediction and prevention.
A search of the PubMed database was performed on March 24th 2020. Eligible articles included original studies investigating the role of ML for sport injury prediction and prevention. Two independent reviewers screened articles, assessed eligibility, risk of bias and extracted data. Methodological quality and risk of bias were determined by the Newcastle-Ottawa Scale. Study quality was evaluated using the GRADE working group methodology.
Eleven out of 249 studies met inclusion/exclusion criteria. Different ML methods were used (tree-based ensemble methods (n = 9), Support Vector Machines (n = 4), Artificial Neural Networks (n = 2)). The classification methods were facilitated by preprocessing steps (n = 5) and optimized using over- and undersampling methods (n = 6), hyperparameter tuning (n = 4), feature selection (n = 3) and dimensionality reduction (n = 1). Injury predictive performance ranged from poor (Accuracy = 52%, AUC = 0.52) to strong (AUC = 0.87, f1-score = 85%).
Current ML methods can be used to identify athletes at high injury risk and be helpful to detect the most important injury risk factors. Methodological quality of the analyses was sufficient in general, but could be further improved. More effort should be put in the interpretation of the ML models.
Current ML methods can be used to identify athletes at high injury risk and be helpful to detect the most important injury risk factors. Methodological quality of the analyses was sufficient in general, but could be further improved. More effort should be put in the interpretation of the ML models.Combination therapy has been a standard strategy in the clinical tumor treatment. We have demonstrated that combination of Tetradrine (Tet) and Cisplatin (CDDP) presented a marked synergistic anticancer activity, but inevitable side effects limit their therapeutic concentration. Considering the different physicochemical and pharmacokinetic properties of the two drugs, we loaded them into a nanovehicle together by the improved double emulsion method. The nanoparticles (NPs) were prepared from the mixture of poly(ethyleneglycol)-polycaprolactone (PEG-PCL) and polycarprolactone (HO-PCL), so CDDP and Tet can be located into the NPs simultaneously, resulting in low interfering effect and high stability. Images from fluorescence microscope revealed the cellular uptake of both hydrophilic and hydrophobic agents delivered by the NPs. In vitro studies on different tumor cell lines and tumor tissue revealed increased tumor inhibition and apoptosis rates. As to the in vivo studies, superior antitumor efficacy and reduced side effects were observed in the NPs group. DNA Repair inhibitor Furthermore, 18FDG-PET/CT imaging demonstrated that NPs reduced metabolic activities of tumors more prominently. Our results suggest that PEG-PCL block copolymeric NPs could be a promising carrier for combined chemotherapy with solid efficacy and minor side effects.
Continuous veno-venous hemofiltration (CVVH) can be used to reduce fluid overload and tissue edema, but excessive fluid removal may impair tissue perfusion. Skin blood flow (SBF) alters rapidly in shock, so its measurement may be useful to help monitor tissue perfusion.
In a prospective, observational study in a 35-bed department of intensive care, all patients with shock who required fluid removal with CVVH were considered for inclusion. SBF was measured on the index finger using skin laser Doppler (Periflux 5000, Perimed, Järfälla, Sweden) for 3min at baseline (before starting fluid removal, T0), and 1, 3 and 6h after starting fluid removal. The same fluid removal rate was maintained throughout the study period. Patients were grouped according to absence (Group A) or presence (Group B) of altered tissue perfusion, defined as a 10% increase in blood lactate from T0 to T6 with the T6 lactate ≥ 1.5mmol/l. Receiver operating characteristic curves were constructed and areas under the curve (AUROC) calculated to identify variables predictive of altered tissue perfusion.
My Website: https://www.selleckchem.com/products/blasticidin-s-hcl.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team