Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated.
The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by
assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups control, undifferentiated, rh-bFGF, and rc-bFGF groups. Afterage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs.
A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs.In regenerative medical products for clinical applications, a major concern is the risk of ruminant-derived materials developing transmissible spongiform encephalopathy (TSE) in the manufacturing process. Because of the risk of TSE causing prion disease, the raw materials derived from ruminants should be compliant with the "Standard for Biological Raw Materials" to ensure the quality and safety of pharmaceutical products. We therefore tested whether plasmid DNA could withstand four chemical reagents (Gdn-HCl, Gdn-SCN, TCA, or SDS), having referred to the report by Tateishi et al. [1], which describes how Creutzfeldt-Jakob disease pathogens can be inactivated by chemical reagents capable of producing a 7-log reduction in prion inactivation. We observed that plasmid DNA was mixed with chemical reagents and that the functionality of plasmid DNA was equivalent for both chemical and non-chemical treatment. The potency of plasmid DNA was monitored by the existence of DNA fragments and the function by which GFP proteins were produced by HEK293-cell transfected plasmid DNA. The existence of DNA fragments was detected in plasmid DNA treated by chemical reagents, except when undergoing TCA treatment. Additionally, when HEK293 cells were transfected with the plasmid DNA after chemical treatment, GFP protein was produced. These results indicate that plasmid DNA can withstand the chemical treatments for blocking prion transmission.
Peroxisome proliferator-activated receptor (PPAR) subfamily play an important role in chondrogenesis. Previous study has reported that mixture of GW0742 (PPAR-δ agonist), hyaluronic acid (HA) and mesenchymal stem cells (MSCs) enhance chondrogenesis. The purpose of this study is to compare with efficacies of commercially available HA and demonstrate correlation of PPAR-γ and PPAR-δ.
In this experimental study, MSCs were cultured with chondrogenic media and clinical HA gels (Euflexxa®, Synvisc®, Orthovisc® and Supartz®) using micormass culture method. Expression of type Ⅰ, Ⅱ collagen and matrix metalloprotease-13 (MMP-13) was measured by immunoblotting. MSCs were cultured with chondrogenic media and/or HA and/or GW0742 and/or rosiglitazone (PPAR-γ agonist) and/or human osteoarthritis synovial fluid. Immunoblotting was used to measure expression of type Ⅱ collagen and PPAR-γ. To identify the effective dose for chondrogenesis and adipogenesis, either 0.1, 1, 5 or 10μM of rosiglitazone was added to MSCs in cho a strong pro-adipogenic effect, which inhibits the chondrogenic effect. BLU-554 PPAR-γ is related with PPAR-δ and shows a chondrogenic effect at lower concentrations. And clinical HA gels shows various efficacy of chondrogenesis. This study suggested that PPAR-γ and PPAR-δ are key regulatory factors of chondrogenesis.In articular cartilage-repair, grafts usually fuse unsatisfactorily with surrounding host cartilage. Enzymatic dissociation of cartilaginous matrix to free chondrocytes may benefit fusion. We tested such a hypothesis with human cartilage in vitro, and with porcine cartilage in vivo. Human articular cartilage was collected from knee surgeries, cut into disc-and-ring sets, and randomly distributed into three groups disc-and-ring sets in Group 1 were left untreated; in Group 2 only discs, and in Group 3 both discs and rings were treated with enzyme. Each disc-and-ring reassembly was cultured in a perfusion system for 14 days; expression of cartilage marker proteins and genes was evaluated by immunohistochemistry and PCR. Porcine articular cartilage from knees was similarly fashioned into disc-and-ring combinations. Specimens were randomly distributed into a control group without further treatment, and an experimental group with both disc and ring treated with enzyme. Each disc-and-ring reassembly was transplanted into subcutaneous space of a nude mouse for 30 days, and retrieved to examine disc-ring interface. In in vitro study with human cartilage, a visible gap remained at disc-ring interfaces in Group 1, yet became indiscernible in Group 2 and 3. Marker genes, including type II collagen, aggrecan and Sox 9, were well expressed by chondrocytes in all specimens, indicating that chondrocytes' phenotype retained regardless of enzymatic treatment. Similar results were found inin vivo study with porcine cartilage. Enzymatic dissociation of cartilaginous matrix promotes fusion of adjacent cartilage. The clinical relevance may be a novel method to facilitate integration of repaired cartilage in joints.Multilineage differentiating stress enduring cells (Muse cells), double positive for SSEA-3 and CD105, can be isolated by fluorescence-activated cell sorting (FACS) or sever cellular conditions from dermal fibroblasts, bone marrow stem cells (BMSCs), adipose tissue derived stem cells (ADSCs), fresh bone marrow and liposuction fat. When cultured in a single-cell suspension, Muse cells can grow into characteristic cell clusters. Muse cells maintain pluripotency as evidenced by pluripotent markers in vitro. Besides, Muse cells have no tumorigenesis up to 6 months in SCID mice. Muse cells differentiate into cells representative of all three germ layers both spontaneously and under specific induction. In comparison to mesenchymal stem cells (MSCs), Muse cells show higher homing and migration capabilities to damaged sites which is predominantly attributed to S1P-S1PR2 axis. The regenerative effects of Muse cells have been demonstrated by many models in vivo or in vitro, including stroke, intracerebral hemorrhage, myocardial infarction, aortic aneurysm, lung injuries, liver fibrosis, focal segmental glomerulosclerosis, osteochondral defects and skin ulcer.
Read More: https://www.selleckchem.com/products/blu-554.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team