NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The role involving salt within stabilizing tin-lead (Sn-Pb) alloyed perovskite massive dots.
Pairwise sequence alignment is often a computational bottleneck in genomic analysis pipelines, particularly in the context of third-generation sequencing technologies. To speed up this process, the pairwise k-mer Jaccard similarity is sometimes used as a proxy for alignment size in order to filter pairs of reads, and min-hashes are employed to efficiently estimate these similarities. However, when the k-mer distribution of a dataset is significantly non-uniform (e.g., due to GC biases and repeats), Jaccard similarity is no longer a good proxy for alignment size. In this work, we introduce a min-hash-based approach for estimating alignment sizes called Spectral Jaccard Similarity, which naturally accounts for uneven k-mer distributions. The Spectral Jaccard Similarity is computed by performing a singular value decomposition on a min-hash collision matrix. We empirically show that this new metric provides significantly better estimates for alignment sizes, and we provide a computationally efficient estimator for these spectral similarity scores.Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individuals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived models. As the number of available and newly developed genome-scale metabolic models increases, new methods are needed to objectively analyze large sets of models and to identify the determinants of metabolic heterogeneity. see more We developed a distance-based workflow that combines consensus machine learning and metabolic modeling techniques and used it to apply pattern recognition algorithms to collections of genome-scale metabolic models, both microbial and human. Model composition, network topology and flux distribution provide complementary aspects of metabolic heterogeneity in patient-specific genome-scale models of skeletal muscle. Using consensus clustering analysis we identified the metabolic processes involved in the individual responses to endurance training in older adults.The genetic effect explains the causality from genetic mutations to the development of complex diseases. Existing genome-wide association study (GWAS) approaches are always built under a linear assumption, restricting their generalization in dissecting complicated causality such as the recessive genetic effect. Therefore, a sophisticated and general GWAS model that can work with different types of genetic effects is highly desired. Here, we introduce a deep association kernel learning (DAK) model to enable automatic causal genotype encoding for GWAS at pathway level. DAK can detect both common and rare variants with complicated genetic effects where existing approaches fail. When applied to four real-world GWAS datasets including cancers and schizophrenia, our DAK discovered potential casual pathways, including the association between dilated cardiomyopathy pathway and schizophrenia.This piece identifies and compares three examples of successful data sharing that sought to improve housing and health outcomes, ultimately improving the lives of vulnerable groups. Data strategists should first consider proving out the benefit in consultation with diverse stakeholders, mitigating legal risks from the beginning, and starting with a minimal data prototype.Repeating patterns in architecture are utilized in elements at a variety of scales, from a façade to perforated ceilings and wall reliefs to carpeting and tile stonework. The Truchet tiling concept is one means to develop a modular non-repeating pattern. This paper explores some of the basic concepts of Truchet tilings, variations developed, and some current examples of using these methods with digital generation and fabrication methods.Deep learning, a set of approaches using artificial neural networks, has generated rapid recent advancements in machine learning. Deep learning does, however, have the potential to reduce the reproducibility of scientific results. Model outputs are critically dependent on the data and processing approach used to initially generate the model, but this provenance information is usually lost during model training. To avoid a future reproducibility crisis, we need to improve our deep-learning model management. The FAIR principles for data stewardship and software/workflow implementation give excellent high-level guidance on ensuring effective reuse of data and software. We suggest some specific guidelines for the generation and use of deep-learning models in science and explain how these relate to the FAIR principles. We then present dtoolAI, a Python package that we have developed to implement these guidelines. The package implements automatic capture of provenance information during model training and simplifies model distribution.Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.High-throughput drug screens in cancer cell lines test compounds at low concentrations, thereby enabling the identification of drug-sensitivity biomarkers, while resistance biomarkers remain underexplored. Dissecting meaningful drug responses at high concentrations is challenging due to cytotoxicity, i.e., off-target effects, thus limiting resistance biomarker discovery to frequently mutated cancer genes. To address this, we interrogate subpopulations carrying sensitivity biomarkers and consecutively investigate unexpectedly resistant (UNRES) cell lines for unique genetic alterations that may drive resistance. By analyzing the GDSC and CTRP datasets, we find 53 and 35 UNRES cases, respectively. For 24 and 28 of them, we highlight putative resistance biomarkers. We find clinically relevant cases such as EGFRT790M mutation in NCI-H1975 or PTEN loss in NCI-H1650 cells, in lung adenocarcinoma treated with EGFR inhibitors. Interrogating the underpinnings of drug resistance with publicly available CRISPR phenotypic assays assists in prioritizing resistance drivers, offering hypotheses for drug combinations.
Homepage: https://www.selleckchem.com/products/hdm201.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.