Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In drinking water distribution pipeline systems, the tap water quality is regulated by several biotic and abiotic factors, which can threaten the health of consumers. Stagnation is inevitable in the water distribution pipeline however, the combined effects of seasonal changes and stagnation on tap water quality are not well understood. Here, we investigated the seasonal variations in the chemical and biological quality of water after overnight stagnation for a period of one year. The results showed that the tap water quality deteriorated after overnight stagnation, with up to a 2.7-fold increase in the total iron concentrations. The total bacterial cell concentrations increased by 59-231% after overnight stagnation. The total cell and cell-bound adenosine triphosphate (ATP) of the stagnant water samples peaked in summer. In addition, Biolog analysis showed that the metabolic activities of microbes were higher in spring. The bacterial community based on Illumina Miseq DNA sequence analysis found that Proteobacteria dominated the drinking water bacterial community. The bacterial community structure varied significantly among different seasons, where the diversity and richness of the community were much higher in spring. Structural equation modeling (SEM) was constructed to determine the correlations between bacterial metabolic functions and the community structure. The redundancy analysis (RDA) indicated that the residual chlorine played a critical role in the construction of the bacterial community. Altogether, the overall findings from the present work provide novel insights into how the quality of tap water quality impacted by the seasonal changes and overnight stagnation.This study focused on the stabilization of lead glass sludge (LGS) using reactive magnesia (MgO) via the fabrication of lightweight building bricks. Two types of MgO with different reactivities were prepared by the thermal treatment of magnesium carbonate at 800 °C and 1200 °C (MgO-800 and MgO-1200, respectively). The fabrication of bricks and Pb stabilization were performed by wet mixing LGS with MgO followed by humidity incubation. Results showed that the Pb immobilization and performance of the produced bricks were strongly affected by MgO reactivity, curing time, and LGS-MgO weight ratios. Pb immobilization was performed by the transformation of soluble lead into an insoluble hydrocerussite phase, particularly in hydrated mixtures with high MgO content (> 25 wt%). Pb immobilization inside a magnesium silicate hydrate skeleton is the main mechanism in the hydrated samples containing 25 wt% MgO. To achieve "sustainability," we recommend the use of a hydrated mixture containing 75 wt% of LGS and 25 wt% of MgO-800 in the production of building bricks because this mixture exhibits high compressive strength, high Pb immobilization, low energy demand, and low environmental pollution.During the removal of pollutants from wastewater, the underwater compressibility of three-dimensional biomass materials is the main factor determining their properties and service life. To construct a chitosan (CS)-based material with underwater superelasticity, a bidirectional freezing technique was used to introduce bamboo fibers (BFs) as bridges between CS lamellae to form a biomimetic CS/BFs monolith with an architecture similar to Thalia dealbata stems. BFs completely penetrated CS lamellae from the top down, which served as springs to dampen the elastic deformation during compressive cycles. After 10,000 underwater compressive cycles at 60% strain, the plastic deformation was negligible, and after 100 cycles at 90% strain, the monolith retained 93.8% of the maximum stress. Moreover, the CS/BFs monolith was loaded with CaCO3 nanoparticles via compression-release-compression to obtain a CS/BFs/CaCO3 monolith that exhibited excellent water purification capabilities. The CS/BFs/CaCO3 monolith removed water-soluble dyes, heavy-metal ions, and emulsified oils from water with a high separation efficiency by simple squeezing and pumping methods. The novel pumping technology using the CS/BFs/CaCO3 monolith provides a facile and rapid method to separate oil-in-water emulsions (maximum water flux of 11,776.9 L m-2 h-1). Therefore, the CS/BFs/CaCO3 monolith with underwater superelasticity has great potential applications for wastewater treatment.Adsorption using nanomaterials is considered an effective method for controlling the levels of toxic heavy metal in wastewater. Herein, a novel adsorbent, core-shell phase-transited lysozyme film-coated magnetic nanoparticles (Fe3O4@SiO2@PTL) for Hg(II) ions removal from aqueous solutions was explored via facile and fast phase transformation and self-assembly process of lysozyme. The physiochemical properties of Fe3O4@SiO2@PTL were investigated using various characterization techniques. The adsorption performances such as kinetics, isotherms, selectivity, the effect of coexisting ions, and regeneration were evaluated. Fe3O4@SiO2@PTL showed an extremely high Hg(II) uptake rate and achieved more than 90% equilibrium adsorption capacity in 5 min. Hg(II) adsorption was followed by a pseudo-second-order kinetic model and fitted the Langmuir model by achieving a maximum uptake of 701.51 mg/g. Furthermore, excellent Hg(II) selectivity was obtained in a mixed solution containing various heavy metal ions, along with good chemical stability owing to the high adsorption capacity maintained after five cycles. The adsorption analyses indicated that the amino, imino, amide, hydroxyl, carboxyl, and thiol groups exposed on the surface of Fe3O4@SiO2@PTL were vital for Hg(II) removal. Consequently, this work will significantly assist in the development of an easily available, eco-friendly, and selective adsorbent material to remove heavy metal ions from wastewater.Ag2O/ZnO/rGO heterojunction photocatalysts were synthesized via a rapid microwave hydrothermal method for photocatalytic degradation of bisphenol A (BPA) under simulated solar light. Ag doping efficiently decreased the bandgap of ZnO, and loading on rGO inhibited the recombination of photoinduced electron-hole pairs. The highest BPA removal rate (80%) was achieved with an Ag doping ratio of 5% and a GO loading ratio of 3 wt%. Epicatechin order The enhanced photocatalytic performance was attributed to the narrower bandgap and the improved separation efficiency of electron-hole pairs. Moreover, the recycling experiments proved that Ag2O/ZnO/rGO possessed excellent photostability. Hole (h+) and •OH played crucial roles in the photocatalytic system. The degradation pathway of BPA including hydroxylation and the cleavage of covalent bonds was proposed. The toxicity assessment of intermediates elucidated that most of intermediates were less toxic than BPA. The as-prepared Ag2O/ZnO/rGO exhibited outstanding photostability and pH adaptability, having great potential to be applied to the degradation of emerging organic pollutants in wastewater.
Here's my website: https://www.selleckchem.com/products/-epicatechin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team