Notes
![]() ![]() Notes - notes.io |
An efficient pathway toward a novel class of trifluoromethyl building blocks was elaborated. The reaction of α-CF3-enamines with arylaldehydes resulted in direct synthesis of α,β-diaryl-CF3-enones isolated in up to 93% yield as E-isomers. The possible reaction mechanism was proposed using the Zimmerman-Traxler model. The reaction of α,β-diaryl-CF3-enones with hydrazines opens a novel pathway to trifluoromethylated pyrazolines. Oxidation of pyrazolines with DDQ opened access to totally regioselective preparation of 3-CF3-pyrazoles isolated in high yield. Using this strategy, 4-arylated derivatives of known drugs Celebrex, Mavacoxib, and SC-560 can be synthesized.A highly diastereo- and enantioselective cyclopropanation reaction of 3-acylcoumarins with 3-halooxindoles catalyzed by an organocatalyst through a [2 + 1] Michael/intramolecular cyclization process was developed. This scenario provides a facile strategy to access spirooxindole-cyclopropa[c]coumarin compounds bearing three continuous stereocenters, including two vicinal quaternary all-carbon stereocenters with high to excellent diastereo- and enantioselectivities. The HRMS study revealed the vital importance of the ammonium ylide intermediate in the catalytic process.Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed. In this study, a series of new conjugated/insulating BCPs, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLx, x = 1-3), as stretchable hole-trapping materials are reported. The linear and branched PDL blocks with comparable molecular weights were used to investigate the effect of polymer architecture on morphology and device performance. Moreover, the coverage area of the polyfluorene nanofibers on the BCP films was extracted from atomic force microscopy images, which can be correlated with the trapping density of the polymer electrets. The branched PDL segments not only improve stretchability but also tailor crystallinity and phase separation of the BCPs, thus increasing their charge-trapping ability. The OFET memory device with PF-b-PDL3 as the electret layer exhibited the largest memory window (102 V) and could retain its performance at up to 100% strain. This research highlights the importance of the BCP design for developing stretchable charge-trapping materials.Chromate (Cr[VI]) is a highly phytotoxic contaminant that is ubiquitous in soils. However, how Cr(VI) is taken up by plant roots remains largely unknown. Here, we show that the high-affinity sulfate transporter Sultr1;2 is responsible for Cr(VI) uptake by the roots of Arabidopsis thaliana. Sultr1;2 showed a much higher transport activity for Cr(VI) than Sultr1;1 when expressed in yeast cells. Knockdown of Sultr1;2 expression in Arabidopsis markedly reduced the Cr(VI) uptake rate, whereas knockout of Sultr1;1 had no or little effect. A double-knockout mutant (DKO) of the two genes lost the ability of Cr(VI) uptake almost completely. The Sultr1;2 knockdown mutant or DKO plants displayed higher resistance to Cr(VI) under normal sulfate conditions as a consequence of the lower tissue Cr accumulation. Overexpression of Sultr1;2 substantially increased Cr(VI) uptake with shoot Cr concentration being 1.6-2.0 times higher than that in the wild-type. These results indicate that Sultr1;2 is a major transporter responsible for Cr(VI) uptake in Arabidopsis, while Sultr1;1 plays a negligible role. Taken together, our study has identified a major transporter for Cr(VI) uptake in plants, providing potential strategies for engineering plants with low Cr accumulation and consequently enhanced Cr(VI) resistance and also plants with enhanced accumulation of Cr for the purpose of phytoremediation.An acid-mediated and DMSO participant one-pot tandem synthesis of 3-substituted-1-aryl-1H-pyrazolo-[3,4- b]quinoline from readily available anilines and pyrazolones was achieved. This method enables regioselective construction of the valuable heterocycles under transition-metal and oxidant-free conditions in which DMSO acts as a methine source as well as solvent making this process an environmentally benign approach. A broad range of diversely substituted aryl amines and pyrazolines are successfully employed in this reaction to access a series of pyrazolo[4,3-c]quinolones through a novel cascade mechanism. JAK inhibitor Furthermore, the application and mechanistic studies of the present methodology also demonstrated.
Homepage: https://www.selleckchem.com/products/trastuzumab-deruxtecan.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team