Notes
![]() ![]() Notes - notes.io |
The diagnosis of myocardial infarction with non-obstructive coronary arteries (MINOCA) necessitates documentation of an acute myocardial infarction (AMI), non-obstructive coronary arteries, using invasive coronary angiography or coronary computed tomography angiography and no clinically overt cause for AMI. Historically patients with MINOCA represent a clinical dilemma with subsequent uncertain clinical management. Differential diagnosis is crucial to choose the best therapeutic option for ischemic and non-ischemic MINOCA patients. Cardiovascular magnetic resonance (CMR) is able to analyze cardiac structure and function simultaneously and provides tissue characterization. Moreover, CMR could identify the cause of MINOCA in nearly two-third of patients providing valuable information for clinical decision making. Finally, it allows stratification of patients with worse outcomes which resulted in therapeutic changes in almost half of the patients. In this review we discuss the features of CMR in MINOCA; from exam protocols to imaging findings.Myocardial infarction (MI) is defined as myocardial cell death due to prolonged myocardial ischemia. Clinically, troponin rise and/or fall have become the "defining feature of MI" according to the universal definition of MI (UD-MI). Ricolinostat mw Takotsubo syndrome (TS) and TS-related disease conditions also cause troponin elevation with typical rise and/or fall pattern but through a mechanism other than coronary ischemia. By strict application of the clinical diagnostic criteria for type-1 MI, type-2 MI, type-3 MI, and MI with non-obstructive coronary arteries according to the UD-MI including the fourth one published recently, TS and most of the 26 other causes of troponin elevation mentioned in the fourth UD-MI may erroneously be classified as MI. The existing evidence argues for the case that TS by itself is not a MI. Hyper-activation of the autonomic-sympathetic nervous system including local cardiac sympathetic hyper-activation and disruption with nor-epinephrine churn and spillover is the most probable cause of TS. This autonomic neuro-cardiogenic (ANCA) mechanism results in myocardial "cramp" (stunning), the severity and duration of which depend on the degree of the sympathetic-hyperactivation and nor-epinephrine spillover. The myocardial cramp may squeeze the cytosolic free troponin pools causing mild to moderate troponin elevation in TS and TS-related disease conditions. This ANCA syndrome, which has hitherto been enveloped by the UD-MI over more than one decade, may occur in acute, recurrent, and chronic forms. In this critical review, the controversies of UD-MI, evidence for ANCA syndrome, and a hypothetical mechanism for the troponin elevation in ANCA syndrome are provided.[This corrects the article DOI 10.18632/oncotarget.27303.].[This corrects the article DOI 10.18632/oncotarget.3347.].The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs. Its central role in immunosurveillance positions the cGAS-STING pathway as an attractive anti-cancer immunotherapeutic drug target for chemical agonists or vaccine adjuvants and suggests a key node to be targeted in a synthetic lethal approach. We also discuss adaptive mechanisms used by cancer cells to circumvent cGAS-STING signaling and present evidence linking chronic cGAS-STING activation to inflammation-induced carcinogenesis, cautioning against the use of activating the cGAS-STING pathway as an anti-tumor immunotherapy. A deeper mechanistic understanding of the cGAS-STING pathway will aid in the identification of potentially efficacious anti-cancer therapeutic targets.The influence of breast cancer cells on normal cells of the microenvironment, such as fibroblasts and macrophages, has been heavily studied but the influence of normal epithelial cells on breast cancer cells has not. Here using in vivo and in vitro models we demonstrate the impact epithelial cells and the mammary microenvironment can exert on breast cancer cells. Under specific conditions, signals that originate in epithelial cells can induce phenotypic and genotypic changes in cancer cells. We have termed this phenomenon "cancer cell redirection." Once breast cancer cells are redirected, either in vivo or in vitro, they lose their tumor forming capacity and undergo a genetic expression profile shift away from one that supports a cancer profile towards one that supports a non-tumorigenic epithelial profile. These findings indicate that epithelial cells and the normal microenvironment influence breast cancer cells and that under certain circumstances restrict proliferation of tumorigenic cells.
The findings of COMPASS, a randomized phase II study, suggested that the regimens and courses of neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (GC) did not affect the pathological response. However, pathological complete response was achieved in 10% patients who received four courses of either S-1/cisplatin or paclitaxel/cisplatin. We hypothesized that if relevant biomarkers could be used to predict the suitable NAC regimen before treatment initiation, further improvements could be ensured in the outcomes of locally advanced GC.
mRNA extraction, real-time polymerase chain reaction, and immunohistochemical analyses were performed using endoscopic biopsy specimens of primary tumors, collected prior to NAC, to determine the clinically relevant biomarkers.
,
,
,
,
,
, and
were identified as biomarker candidates, since their expression was significantly associated with the pathological responses to each NAC regimen. Furthermore,
and
were identified as predictive biomarkers of the pathological response to each NAC regimen.
Read More: https://www.selleckchem.com/products/rocilinostat-acy-1215.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team