Notes
![]() ![]() Notes - notes.io |
Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g-1 at 0.7 A g-1 and good rate capability of 34.8% at 4.9 A g-1. Vandetanib Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg-1 at a power density of 490 W kg-1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.Three-dimensional printed plastic products developed through fused deposition modeling (FDM) endure long-term loading in most of the applications. The tensile creep behavior of such products is one of the imperative benchmarks to ensure dimensional stability under cyclic and dynamic loads. This research dealt with the optimization of the tensile creep behavior of 3D printed parts produced through fused deposition modeling (FDM) using polylactic acid (PLA) material. The geometry of creep test specimens follows the American Society for Testing and Materials (ASTM D2990) standards. Three-dimensional printing is performed on an open-source MakerBot desktop 3D printer. The Response Surface Methodology (RSM) is employed to predict the creep rate and rupture time by undertaking the layer height, infill percentage, and infill pattern type (linear, hexagonal, and diamond) as input process parameters. A total of 39 experimental runs were planned by means of a categorical central composite design. The analysis of variance (ANOVA) results revealed that the most influencing factors for creep rate were layer height, infill percentage, and infill patterns, whereas, for rupture time, infill pattern was found significant. The optimized levels obtained for both responses for hexagonal pattern were 0.1 mm layer height and 100% infill percentage. Some verification tests were performed to evaluate the effectiveness of the adopted RSM technique. The implemented research is believed to be a comprehensive guide for the additive manufacturing users to determine the optimum process parameters of FDM which influence the product creep rate and rupture time.In the present study, the potential to design natural tea-infused set yoghurt was investigated. Three types of tea (Camellia sinensis) black, green and oolong tea as well as lemon balm (Melissa officinalis L.) were used to produce set yoghurt. The sensory quality (using Quantitative Descriptive Profile analysis and consumer hedonic test) and texture analysis, yield stress, physical stability and colour analysis were assessed to describe the profile of the yoghurt and influence of quality attributes of the product on the consumer acceptability of infused yoghurts in comparison with plain yoghurt. Among the analyzed plant additives for yoghurt, addition of 2% oolong tea to the yoghurt allows a functional food to be obtained with satisfactory texture and sensory properties, accepted by consumers at the same level as for control yoghurt. Both types of yoghurt were also characterised by high consumer willingness to buy, which confirms the legitimacy of using oolong tea as a natural, functional yoghurt additive that improves the sensory quality of the product. The high overall quality of yoghurt with oolong tea in comparison to other plant extracts was associated with the intensive peach flavour and odour, nectar and sweet odour and flavour, and the highest creaminess and thickness. That was confirmed by principal component analysis (PCA) where the overall sensory quality of yoghurts was mainly positively correlated with peach flavour and odour, sweet odour and yoghurt odour, while it was negatively correlated with herbs flavor and odour, and green tea flavour and odour. The sensory profile confirmed no differences in textural profile between plain yoghurt and the tea-infused one measured in the mouth, which corresponds to the result of textural properties such as firmness and adhesiveness.The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.A sensor-rich environment can be exploited for elder healthcare applications. In this work, our objective was to conduct a continuous and long-term analysis of elderly's behavior for detecting changes. We indeed did not study snapshots of the behavior but, rather, analyzed the overall behavior evolution over long periods of time in order to detect anomalies. Therefore, we proposed a learning method and formalize a normal behavior pattern for elderly people related to her/his Activities of Daily Living (ADL). We also defined a temporal similarity score between activities that allows detecting behavior changes over time. During the periods of time when behavior changes occurred, we then focused on each activity to identify anomalies. Finally, when a behavior change occurred, it was also necessary to help caregivers and/or family members understand the possible pathology detected in order for them to react accordingly. Therefore, the framework presented in this article includes a fuzzy logic-based decision support system that provides information about the suspected disease and its severity.
Read More: https://www.selleckchem.com/products/Vandetanib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team