Notes
![]() ![]() Notes - notes.io |
This optimizes the level of an athlete's training load, increases the effectiveness of training, enables an individual approach, and reduces the possibility of overuse or injuries. This study is a practical example of the use of modern technology in the return of injured athletes to normal training and competition. This information will help tennis coaches and players to objectify their workloads during training and competitions, as this is usually only an intuitive assessment.Injuries are often associated with rapid body segment movements. We compared Certus motion capture and APDM inertial measurement unit (IMU) measurements of tibiofemoral angle and angular velocity changes during simulated pivot landings (i.e., ~70 ms peak) of nine cadaver knees dissected free of skin, subcutaneous fat, and muscle. Data from a total of 852 trials were compared using the Bland-Altman limits of agreement (LoAs) the Certus system was considered the gold standard measure for the angle change measurements, whereas the IMU was considered the gold standard for angular velocity changes. The results show that, although the mean peak IMU knee joint angle changes were slightly underestimated (2.1° for flexion, 0.2° for internal rotation, and 3.0° for valgus), the LoAs were large, ranging from 35.9% to 49.8%. In the case of the angular velocity changes, Certus had acceptable accuracy in the sagittal plane, with LoAs of ±54.9°/s and ±32.5°/s for the tibia and femur. For these rapid motions, we conclude that, even in the absence of soft tissues, the IMUs could not reliably measure these peak 3D knee angle changes; Certus measurements of peak tibiofemoral angular velocity changes depended on both the magnitude of the velocity and the plane of measurement.This study aimed to investigate how different strategies of task constraint manipulation impact physical and tactical demands in small-sided and conditioned games (SSCG). Ten recreational U-17 soccer players participated in this study (16.89 ± 0.11 years). We used different strategies of task manipulation to design two 4 vs. 4 SSCG Structural SSCG and Functional SSCG. In Structural SSCG, pitch format and goal sizes were manipulated, while in Functional SSCG, players were allowed to kick the ball twice and at least 5 passes to shoot at the opponent's goal. Players participated in four Structural and Functional SSCG, of five minutes duration with a two-minute interval in between. Players' physical performance and tactical behavior were assessed using the WIMU PROTM inertial device. Structural SSCG stimulated players to cover more distance in sprinting (p = 0.003) and high-speed running (p < 0.001). Regarding tactical behavior, Structural SSCG stimulated players to explore game space better (p < 0.001). Moreover, Functional SSCG stimulated players to be closer to the ball, decreasing the effective playing space (p = 0.008). We conclude that these strategies of task constraint manipulation impact physical and tactical demands of the game.Although interest in using wearable sensors to characterize movement disorders is growing, there is a lack of methodology for developing clinically interpretable biomarkers. Such digital biomarkers would provide a more objective diagnosis, capturing finer degrees of motor deficits, while retaining the information of traditional clinical tests. We aim at digitizing traditional tests of cognitive and memory performance to derive motor biometrics of pen-strokes and voice, thereby complementing clinical tests with objective criteria, while enhancing the overall characterization of Parkinson's disease (PD). 35 participants including patients with PD, healthy young and age-matched controls performed a series of drawing and memory tasks, while their pen movement and voice were digitized. We examined the moment-to-moment variability of time series reflecting the pen speed and voice amplitude. The stochastic signatures of the fluctuations in pen drawing speed and voice amplitude of patients with PD show a higher signal-to-noise ratio compared to those of neurotypical controls. It appears that contact motions of the pen strokes on a tablet evoke sensory feedback for more immediate and predictable control in PD, while voice amplitude loses its neurotypical richness. We offer new standardized data types and analytics to discover the hidden motor aspects within the cognitive and memory clinical assays.In the current research work, electrical resistance tomography (ERT) was employed for monitoring and visualization of crystallization processes. A first-of-its-kind MATLAB-based interactive GUI application "ERT-Vis" is presented. Two case studies involving varied crystallization methods were undertaken. The experiments were designed and performed involving calcium carbonate reactive (precipitative) crystallization for the high conductivity solution-solute media, and the cooling crystallization of sucrose representing the lower conductivity solution-solute combination. The software successfully provided key insights regarding the process in both crystallization systems. It could detect and separate the solid concentration distributions in the low as well as high conductivity solutions using the visual analytics tools provided. The performance and utility of the software were studied using a software evaluation case study involving domain experts. Participant feedback indicated that ERT-Vis software helps by reconstructing images instantaneously, interactively visualizing, and evaluating the output of the crystallization process monitoring data.Globally, the surge in disease and urgency in maintaining social distancing has reawakened the use of telemedicine/telehealth. Amid the global health crisis, the world adopted the culture of online consultancy. Thus, there is a need to revamp the conventional model of the telemedicine system as per the current challenges and requirements. Security and privacy of data are main aspects to be considered in this era. Data-driven organizations also require compliance with regulatory bodies, such as HIPAA, PHI, and GDPR. These regulatory compliance bodies must ensure user data privacy by implementing necessary security measures. Patients and doctors are now connected to the cloud to access medical records, e.g., voice recordings of clinical sessions. Voice data reside in the cloud and can be compromised. While searching voice data, a patient's critical data can be leaked, exposed to cloud service providers, and spoofed by hackers. Secure, searchable encryption is a requirement for telemedicine systems for secure voice and phoneme searching. This research proposes the secure searching of phonemes from audio recordings using fully homomorphic encryption over the cloud. It utilizes IBM's homomorphic encryption library (HElib) and achieves indistinguishability. Testing and implementation were done on audio datasets of different sizes while varying the security parameters. The analysis includes a thorough security analysis along with leakage profiling. The proposed scheme achieved higher levels of security and privacy, especially when the security parameters increased. However, in use cases where higher levels of security were not desirous, one may rely on a reduction in the security parameters.Pressure-sensitive paint (PSP) is an optical sensor that can measure global pressure distribution by using the oxygen quenching of dye molecules. In particular, anodized aluminum pressure-sensitive paint (AA-PSP) exhibits a fast time response. AA-PSP has been used in unsteady measurements at supersonic and transonic speeds, such as on the surface of a transonic free-flying sphere or the wall of a shock tube when the shock wave passes. To capture such ultrafast phenomena, the frame rate of the camera must be sufficiently fast, and the exposure time must be sufficiently short. Therefore, it is desirable that the AA-PSP exhibits bright luminescence, high-pressure sensitivity, and fast response time. This study focused on pyrene-based AA-PSPs and investigated their characteristics, such as luminescence intensity and pressure sensitivity, at different anodization times, dipping solvents, and dipping concentrations. Furthermore, a time-response test using a shock tube was conducted on the brightest AA-PSP. Consequently, the time for a 90% rise in pressure was 2.2 μs.In this study, we address the problem of downlink throughput degradation in dense wireless local area networks (WLANs) based on the IEEE 802.11ax standard. We demonstrate that this problem essentially results from the asymmetric characteristic of carrier sense multiple access between downlink and uplink transmissions in infrastructure WLANs, and it is exacerbated by a dynamic sensitivity control algorithm that aims to improve spatial reuse (SR) in IEEE 802.11ax. To solve this problem, we propose the interference-aware two-level differentiation mechanism consisting of the dual channel access (DCA) and supplemental power control (SPC) schemes. The proposed mechanism introduces a new measure called a spatial reusability indicator, which roughly estimates the signal-to-interference ratio from the received signal strength of beacon frames. Quisinostat chemical structure Based on this measure, stations (STAs) are classified into the following two categories spatial reusable STAs (SR-STAs) and non-spatial reusable STAs (NSR-STAs). Because SR-STAsxisting mechanisms, and it maintains fairness between SR-STAs and NSR-STAs in terms of the ratio of successful transmission.The paper addresses the investigation of microstructures from AISI 52100 and AISI 4140 in hardened as well as in quenched and tempered conditions. The specimens are compared in terms of their magnetic hysteresis and their microstructural and mechanical properties. Material properties were determined by hardness, microhardness, and X-ray diffraction measurements. Two different approaches were used to characterize magnetic properties via a hysteresis frame device, aiming, on the one hand, to record the magnetic hysteresis with established proceedings by setting a constant magnetic flux and, on the other hand, by offsetting a constant field strength to facilitate reproducibility of the results with other micromagnetic measurement systems. Comparable differences in both the micromagnetic and the mechanical material properties could be determined and quantified for the specifically manufactured specimens. The sensitivity of the magnetic hysteresis and, determined from that, the relationship between magnetic flux and magnetic field strength were confirmed. It was shown that a consistent change in hysteresis shape from hardened to high temperature tempered material states develops and that this change allows the characterization of different materials without the need to adjust magnetization parameters. Repeatedly, an increase in remanence with decreasing hardness was found for both test approaches. Likewise, a decreasing coercivity and increasing maximum magnetic flux could be detected with decreasing retained austenite content. The investigated correlations should thus contribute to the calibration of comparable measurement systems through the holistic characterized specimens.In recent years, neural networks have shown good performance in terms of accuracy and efficiency. However, along with the continuous improvement in diagnostic accuracy, the number of parameters in the network is increasing and the models can often only be run in servers with high computing power. Embedded devices are widely used in on-site monitoring and fault diagnosis. However, due to the limitation of hardware resources, it is difficult to effectively deploy complex models trained by deep learning, which limits the application of deep learning methods in engineering practice. To address this problem, this article carries out research on network lightweight and performance optimization based on the MobileNet network. The network structure is modified to make it directly suitable for one-dimensional signal processing. The wavelet convolution is introduced into the convolution structure to enhance the feature extraction ability and robustness of the model. The excessive number of network parameters is a challenge for the deployment of networks and also for the running performance problems.
My Website: https://www.selleckchem.com/products/JNJ-26481585.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team