Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
SO2 emissions from coal-fired boilers are air pollutants and a source of acid rain, causing extensive environmental pollution. Limestone (CaCO3) is a Ca-based sorbent which is injected into circulating fluidized bed (CFB) boilers, where it combines with SO2 to produce calcium sulfate (CaSO4). As a result, SO2 emissions from a power plant are reduced. In this study, CaCO3 addition was proposed and the desulfurization efficiency improved. The direct desulfurization reaction is dominant in a commercial CFB boiler due to the high CO2 partial pressure, but CaO is formed at a fast reaction rate by calcination in the high temperature or in the low CO2 partial pressure region. Metabolism inhibitor When CaO remains in the loop seal, it is exposed to a high CO2 partial pressure condition moving through the recirculation section for an extended period and re-injected into the furnace as recarbonated CaCO3. To analyze the direct desulfurization reaction kinetics, a shrink core model in which the reaction proceeds inside the particle was adopted. Surface observations through FE-SEM of CaSO4 produced by the 180 minute long desulfurization experiment using TGA suggest that the CaSO4 crystal growth rate increased after the pre-treatment (recarbonation) of limestone. Recarbonation lowered the limestone crystallinity, causing a faster reaction. The CaCO3 recarbonation increased the Ca utilization by more than 20% when the direct desulfurization reaction occurred. The TGA experiments show that recarbonation contributes to CaSO4 conversion. Increasing the desulfurization efficiency using recarbonation can reduce the fixed investment and operating costs of oxy-fuel CFB plants because only desulfurization in the furnace is able to meet SO2 emission regulations or lower the flue gas desulfurization (FGD) dependence. Accordingly, the desulfurization conversions of recarbonated CaCO3 and limestone were compared in this study. Morphological changes in the limestone were also evaluated using XRD, FE-SEM, and other analysis methods.Solid wastes from commercial coal gasification plants are a significant environmental issue in China because of the large quantities produced. In recent years, with the rapid development of coal gasification technologies in China, more and more coal gasification residues are being disposed of in landfills because of the low utilization of the residues. In the present study, the column leaching procedure M1314 developed by the U.S. Environmental Protection Agency was used to evaluate the potential for environmental pollution by potentially hazardous trace elements (Be, V, Mn, Cr, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Cs, Ba, Tl, Pb, Hg, Th, and U) in the coarse and fine gasification residues from two plants using General Electric (GE) and Gaskombinat Schwarze Pumpe (GSP) coal gasification technologies in northwest China. The potentially hazardous trace elements in the residues show different release patterns with the liquid-solid ratio increasing. The cumulative leached concentrations of the potentially hazardous trace elements from the coal gasification residues were generally low, and only Mo in the leachate of GSP fine residue was moderately soluble. V in the GSP coal gasification residues showed an increasing leachability in the leaching procedure. As, Se, Mo, Sb, and Tl in some leachates exceeded their thresholds in Level III of the Chinese Quality Standard for Groundwater and/or the Maximum Contaminant Levels of the U.S. National Primary Drinking Water Regulations. According to the risk assessment code, Se in the GE fine residue and Mo in the GE and GSP fine residues had medium risk to the ecosystem. Those data indicated that the potential for environmental pollution by those elements from coal gasification plants should be given consideration.The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresty of the analysis.Novel hybrids of pyridazine-pyrazoline were synthesized aiming to develop new antiproliferative candidates. All compounds were submitted to the National Cancer Institute (NCI), USA, and many were proved to have significant antiproliferative activity. In addition, in vitro studies of the epidermal growth factor receptor (EGFR) inhibition showed that compounds IXn, IXg, IXb and IXl exhibited excellent inhibitory effect (IC50 = 0.65, 0.75, 0.82 and 0.84 μM, respectively) compared to Erlotinib (IC50 = 0.95 μM). The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compounds IXg and IXn due to their significant EGFR inhibition. Flow cytometeric analysis indicated that compounds IXg and IXn result in increased cell numbers in phase G2/M, suggesting cell cycle arrest in phase G2/M in UO-31cells. Furthermore, real time PCR assay illustrated that compounds IXg and IXn elevated Bax/Bcl2 ratio which confirmed the mechanistic pathway of them. Moreover, the apoptotic induction of UO-31 renal cancer cells was enhanced effectively through activation of caspase-3 by compounds IXg and IXn. On the other hand, molecular docking study was performed to investigate binding mode of interaction of compounds with EGFR-PK in the active site with the aim of rationalizing its promising inhibitory activity. Finally, based on the aforementioned findings, compounds IXg and IXn could be considered as effective apoptosis modulators and promising leads for future development of new anti-renal cancer agents.
My Website: https://www.selleckchem.com/products/gdc-1971.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team