Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Airfoil selection procedure, wind tunnel testing and an implementation of 6-DOF model on flying wing micro aerial vehicle (FWMAV) has been proposed in this research. The selection procedure of airfoil has been developed by considering parameters related to aerodynamic efficiency and flight stability. Airfoil aerodynamic parameters have been calculated using a potential flow solver for ten candidate airfoils. click here Eppler-387 proved to be the most efficient reflexed airfoil and therefore was selected for fabrication and further flight testing of vehicle. Elevon control surfaces have been designed and evaluated for longitudinal and lateral control. The vehicle was fabricated using hot wire machine with EPP styrofoam of density 50 Kg/ m 3 . Static aerodynamic coefficients were evaluated using wind tunnel tests conducted at cruise velocity of 20 m/s for varying angles of attack. Rate derivatives and elevon control derivatives have also been calculated. Equations of motion for FWMAV have been written in a body axis system yielding a 6-DOF model. It was found during flight tests that vehicle conducted coordinated turns with no appreciable adverse yaw. Since FWMAV was not designed with a vertical stabilizer and rudder control surface, directional stability was therefore augmented through winglets and high wing leading edge sweep. Major problems encountered during flight tests were related to left rolling tendency. The left roll tendency was found inherent to clockwise rotating propeller as 'P' factor, gyroscopic precession, torque effect and spiraling slipstream. To achieve successful flights, many actions were required including removal of excessive play from elevon control rods, active actuation of control surfaces, enhanced launch speed during take off, and increased throttle control during initial phase of flight. FWMAV flew many successful stable flights in which intended mission profile was accomplished, thereby validating the proposed airfoil selection procedure, modeling technique and proposed design.Deformation behavior and precipitation features of an Al-Cu alloy are investigated using uniaxial tensile tests at intermediate temperatures. It is found that the true stress drops with the decreased strain rate or the increased deformation temperature. The number of substructures and the degree of grain elongation decrease with the raised temperature or the decreased strain rate. At high temperatures or low strain rates, some dynamic recrystallized grains can be found. The type of precipitates is influenced by the heating process before hot tensile deformation. The content and size of precipitates increase during tensile deformation at intermediate temperatures. As the temperature increases over 200 °C, the precipitation process (Guinier Preston zone (G.P. zones)→θ'' phase→θ' phase) is enhanced, resulting in increased contents of θ'' and θ' phases. However, θ'' and θ' phases prefer to precipitate along the 020Al direction, resulting in an uneven distribution of phases. Considering the flow softening degree and the excessive heterogeneous precipitation of θ'' and θ' phases during hot deformation, the reasonable strain rate and temperature are about 0.0003 s-1 and 150 °C, respectively.The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma- and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of cold-adapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas.Leishmania protozoa are the etiological agents of visceral, cutaneous and mucocutaneous leishmaniasis. In specific geographical regions, such as Latin America, several Leishmania species are endemic and simultaneously present; therefore, a diagnostic method for species discrimination is warranted. In this attempt, many qPCR-based assays have been developed. Recently, we have shown that L. (L.) infantum and L. (L.) amazonensis can be distinguished through the comparison of the Cq values from two qPCR assays (qPCR-ML and qPCR-ama), designed to amplify kDNA minicircle subclasses more represented in L. (L.) infantum and L. (L.) amazonensis, respectively. This paper describes the application of this approach to L. (L.) mexicana and introduces a new qPCR-ITS1 assay followed by high-resolution melt (HRM) analysis to differentiate this species from L. (L.) amazonensis. We show that L. (L.) mexicana can be distinguished from L. (L.) infantum using the same approach we had previously validated for L. (L.) amazonensis. Moreover, it was also possible to reliably discriminate L. (L.) mexicana from L. (L.) amazonensis by using qPCR-ITS1 followed by an HRM analysis. Therefore, a diagnostic algorithm based on sequential qPCR assays coupled with HRM analysis was established to identify/differentiate L. (L.) infantum, L. (L.) amazonensis, L. (L.) mexicana and Viannia subgenus. These findings update and extend previous data published by our research group, providing an additional diagnostic tool in endemic areas with co-existing species.
Website: https://www.selleckchem.com/products/idasanutlin-rg-7388.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team