Notes
![]() ![]() Notes - notes.io |
917; p less then 0.0001 and at LAT23° S, r = 0.879; p less then 0.0001) and SZA (LAT3° S, r = - 0.924; p less then 0.0001 and in LAT23°S, r = - 0.808; p less then 0.0001). Vitamin D3 production starts later in LAT23° S, especially in winter. Lowest percentages were observed in June in both cities, although, compared to LAT3° S, in LAT 23° S the conversion was over 50% lower in the winter period. Cloudiness impaired photoproduction of Vitamin D3 even in summer months in both latitudes. Our results provide data to help guide medical recommendations for sensible sun exposure to promote the cutaneous production of vitamin D3 at different latitudes, seasonality, time of day and cloudiness status in Brazil.The Longitudinal Aging Study Amsterdam (LASA) is an ongoing cohort study among older adults in the Netherlands. Respondents are usually interviewed approximately every 3 years. Because of the exceptional situation of the COVID-19 pandemic, it was decided to add an extra assessment in between, consisting of a postal/digital questionnaire with measures assessing the impact of the COVID-19 situation, as well as a selection of measures from regular LASA measurement cycles covering the physical, social and mental domains. In total, 1128 LASA respondents aged 62-102 years provided data, just after the first wave of the pandemic in 2020. This paper describes the methods and design of the LASA COVID-19 questionnaire, as well as the basic characteristics of the sample, including an overview of impactful situations experienced by older adults during the first months of the pandemic. The data of the questionnaire may be used to study the impact of the COVID-19 pandemic on multiple domains of functioning in older adults.
Monoclonal antibodies (mAbs) have proved to be a valuable tool for the treatment of different cancer types. However, clinical use of an increasing number of mAbs, have also highlighted limitations with monotherapy for cancers, in particular for such with more complex mechanisms, requiring action on additional molecules or pathways, or for cancers quickly acquiring resistance following monotherapy. An example for the latter is the mAb trastuzumab, FDA approved for treatment of metastatic gastric carcinoma. To circumvent this, researchers have reported synergistic, anti-proliferative effects by combination targeting of HER2 and EGFR by trastuzumab and the EGFR-targeting mAb Cetuximab overcoming trastuzumab resistance.
Maintaining the proven functionality of trastuzumab, we have designed bi-specific antibody molecules, called AffiMabs, by fusing an EGFR-targeting Affibody molecule to trastuzumab's heavy or light chains. Having confirmed binding to EGFR and Her2 and cytotoxicity of our AffiMabs, we analyzed aptor targets and guide the design of novel multi-specific molecules. The inherent modularity of the AffiMab format renders it readily applicable to other receptor targets.A flower-like nanostructured MnO2 with near-infrared (NIR) light-triggered high photothermal conversion capability of 30% and reactive oxygen species (ROS) generation ability was successfully developed. Different from the reported MnO2 nanomaterials those were used in the nanomedicine field for only relieving tumor hypoxia and/or imaging, the flower-like MnO2 inherently acts as a competent agent for simultaneously enhanced photothermal and photodynamic therapy. A flower-like nanostructured MnO2 with near-infrared (NIR) light triggered high photothermal conversion capability of 30% and reactive oxygen species (ROS) generation ability was successfully developed.Solar water disinfection (SODIS) is an effective and inexpensive microbiological water treatment technique, applicable to communities lacking access to safely managed drinking water services, however, the lower volume of treated water per day ( less then 2.5 L per batch) is a limitation for the conventional SODIS process. To overcome this limitation, a continuous-flow solar water disinfection system was developed and tested for inactivation of Acanthamoeba castellanii cysts and Escherichia coli, Salmonella Typhimurium, Enterococcus faecalis, and Pseudomonas aeruginosa. The system consisted of a solar heater composed of a cylindrical-parabolic concentrator and a UV irradiator formed by a fresnel-type flat concentrator combined with a cylindrical-parabolic concentrator. Deionized water with low or high turbidity ( less then 1 or 50 nephelometric turbidity unit (NTU) where previously contaminated by 108 Cysts/L or 105-106 CFU/mL of each of four bacterial species. Then was pumped from the heating tank flowing through the heater and through the UV irradiator, then returning to the heating tank, until reaching 45, 55, 60 or 70 °C. The water was kept at the desired temperature, flowing through the UV irradiator for 0.5 and 10 min. Trophozoites were not recovered from cysts (during 20 days of incubation) when water with less then 1 NTU was exposed to UV and 60 °C for 0.5 min. In water with 50 NTU, the same result was obtained after 10 min. In water with less then 1 NTU, the inactivation of all bacteria was achieved when the water with less then 1 NTU was exposed to 55 °C and UV for 0.5 min; in water, with 50 NTU the same result was achieved by exposure to 60 °C and UV for 0.5 min. The prototype processes 1 L of water every 90s. Selleckchem Ro 20-1724 The system is effective and has the potential to be applied as an alternative to the large-scale public drinking water supply.This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Website: https://www.selleckchem.com/products/ro-20-1724.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team