Notes
![]() ![]() Notes - notes.io |
Clinical use of 4-Allylpyrocatechol (APC), a potential antifungal agent from Piper betle, is limited because of its low water solubility. The current study explores the development of the self-nanoemulsifying drug delivery system (SNEDDS) containing APC (APC-SNEDDS) to enhance APC solubility. Results demonstrated that excipient type and concentration played an important role in the solubility of APC in the obtained SNEEDS. SNEDDS, comprising 20% Miglyol 812N, 30% Maisine 35-1, 40% Kolliphor RH40, and 10% absolute ethanol, provided the highest loading capacity and significantly increased water solubility of APC. Oil-in-water nanoemulsions (NE) with droplet sizes of less than 40 nm and a narrow size distribution were obtained after dispersing this APC-SNEDDS in water. The droplets had a negative zeta potential between -10 and -20 mV. The release kinetics of APC from APC-SNEDDS followed the Higuchi model. The NE containing 1.6 mg APC/mL had effective activity against Candida albicans with dose-dependent killing kinetics and was nontoxic to normal cells. The antifungal potential was similar to that of 1 mg nystatin/mL. These findings suggest that APC-SNEDDS are a useful system to enhance the apparent water solubility of APC and are a promising system for clinical treatment of oral infection caused by C. albicans.Currently, there is an increasing use of machine parts manufactured using 3D printing technology. For the numerical prediction of the behavior of such printed parts, it is necessary to choose a suitable material model and the corresponding material parameters. This paper focuses on the determination of material parameters of the Anand material model for acrylonitrile butadiene styrene (ABS-M30) material. Material parameters were determined using the genetic algorithm (GA) method using finite element method (FEM) calculations. The FEM simulations were subsequently adjusted to experimental tests carried out to achieve the possible best agreement. Several experimental tensile and indentation tests were performed. The tests were set up in such a way that the relaxation and creep behaviors were at least partially captured. Experimental tests were performed at temperatures of 23 °C, 44 °C, 60 °C, and 80 °C. The results obtained suggest that the Anand material model can also be used for ABS-M30 plastic material, but only if the goal is not to detect anisotropic behavior. Linifanib chemical structure Future work will focus on the search for a suitable material model that would be able to capture the anisotropic behavior of printed plastic materials.In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs' effect and, to a lesser extent, to the cationic CPE.Hydroxypyr(id)ones are a pharmaceutically important class of compounds that have shown potential in diverse areas of drug discovery. We investigated the 3-hydroxy-4-pyridones 1a-1c and 3-hydroxy-4-thiopyridones 1d-1f as well as their Ru(η6-p-cymene)Cl complexes 2a-2f, and report here the molecular structures of 1b and 1d as determined by X-ray diffraction analysis. Detailed cell biological investigations revealed potent cytotoxic activity, in particular of the 3-hydroxy-4-thiopyridones 1d-1f, while the Ru complexes of both compound types were less potent, despite still showing antiproliferative activity in the low μM range. The compounds did not modulate the cell cycle distribution of cancer cells but were cytostatic in A549 and cytotoxic in NCI-H522 non-small lung cancer cells, among other effects on cancer cells.The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and characterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed.
Describe virtual home assistant use and usefulness from the perspective of older adults and their support persons.
This was a mixed-methods study with older adults and their support persons (
= 10 dyads). Virtual home assistant (VHA) equipment was installed in participants' homes, and its use was documented for 60 days. Participants received protocol-guided telephone calls to address their VHA questions or problems. The type and frequency of VHA use were summarized with descriptive statistics. End-of-study interviews about VHA use were conducted with dyad participants. Qualitative content analyses were used to describe the interview findings about the dyad's perceptions of using the VHA, how it was used, any difficulties experienced, and suggestions for future VHA uses.
Participant dyads reported positive VHA perceptions, including the potential for VHAs to promote aging in place. Participants discussed the challenges learning the technology and replacing old habits with new ones. Participants offered recommendations for future VHA skills and for more education and training about using the VHA.
Here's my website: https://www.selleckchem.com/products/ABT-869.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team