NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Beating the award for elevation associated with NRF2 provides hepatocellular carcinoma tissue more prone to be able to disulfiram/copper-induced ferroptosis.
Glaucoma is the leading reason for irreversible blindness. Early detection and timely treatment of glaucoma are essential for preventing visual field loss or even blindness. In clinical practice, Optical Coherence Tomography (OCT) and Visual Field (VF) exams are two widely-used and complementary techniques for diagnosing glaucoma. selleckchem OCT provides quantitative measurements of the optic nerve head (ONH) structure, while VF test is the functional assessment of peripheral vision. In this paper, we propose a Deep Relation Transformer (DRT) to perform glaucoma diagnosis with OCT and VF information combined. A novel deep reasoning mechanism is proposed to explore implicit pairwise relations between OCT and VF information in global and regional manners. With the pairwise relations, a carefully-designed deep transformer mechanism is developed to enhance the representation with complementary information for each modal. Based on reasoning and transformer mechanisms, three successive modules are designed to extract and collect valuable information for glaucoma diagnosis, the global relation module, the guided regional relation module, and the interaction transformer module, namely. Moreover, we build a large dataset, namely ZOC-OCT&VF dataset, which includes 1395 OCT-VF pairs for developing and evaluating our DRT. We conduct extensive experiments to validate the effectiveness of the proposed method. Experimental results show that our method achieves 88.3% accuracy and outperforms the existing single-modal approaches with a large margin. The codes and dataset will be publicly available in the future.Restoring the normal masticatory function of broken teeth is a challenging task primarily due to the defect location and size of a patient's teeth. In recent years, although some representative image-to-image transformation methods (e.g. Pix2Pix) can be potentially applicable to restore the missing crown surface, most of them fail to generate dental inlay surface with realistic crown details (e.g. occlusal groove) that are critical to the restoration of defective teeth with varying shapes. In this article, we design a computer-aided Deep Adversarial-driven dental Inlay reStoration (DAIS) framework to automatically reconstruct a realistic surface for a defective tooth. Specifically, DAIS consists of a Wasserstein generative adversarial network (WGAN) with a specially designed loss measurement, and a new local-global discriminator mechanism. The local discriminator focuses on missing regions to ensure the local consistency of a generated occlusal surface, while the global discriminator aims at defective teeth and adjacent teeth to assess if it is coherent as a whole. Experimental results demonstrate that DAIS is highly efficient to deal with a large area of missing teeth in arbitrary shapes and generate realistic occlusal surface completion. Moreover, the designed watertight inlay prostheses have enough anatomical morphology, thus providing higher clinical applicability compared with more state-of-the-art methods.Instance segmentation is of great importance for many biological applications, such as study of neural cell interactions, plant phenotyping, and quantitatively measuring how cells react to drug treatment. In this paper, we propose a novel box-based instance segmentation method. Box-based instance segmentation methods capture objects via bounding boxes and then perform individual segmentation within each bounding box region. However, existing methods can hardly differentiate the target from its neighboring objects within the same bounding box region due to their similar textures and low-contrast boundaries. To deal with this problem, in this paper, we propose an object-guided instance segmentation method. Our method first detects the center points of the objects, from which the bounding box parameters are then predicted. To perform segmentation, an object-guided coarse-to-fine segmentation branch is built along with the detection branch. The segmentation branch reuses the object features as guidance to separate target object from the neighboring ones within the same bounding box region. To further improve the segmentation quality, we design an auxiliary feature refinement module that densely samples and refines point-wise features in the boundary regions. Experimental results on three biological image datasets demonstrate the advantages of our method. The code will be available at https//github.com/yijingru/ObjGuided-Instance-Segmentation.Scene text detection and recognition have been well explored in the past few years. Despite the progress, efficient and accurate end-to-end spotting of arbitrarily-shaped text remains challenging. In this work, we propose an end-to-end text spotting framework, termed PAN++, which can efficiently detect and recognize text of arbitrary shapes in natural scenes. PAN++ is based on the kernel representation that reformulates a text line as a text kernel (central region) surrounded by peripheral pixels. By systematically comparing with existing scene text representations, we show that our kernel representation can not only describe arbitrarily-shaped text but also well distinguish adjacent text. Moreover, as a pixel-based representation, the kernel representation can be predicted by a single fully convolutional network, which is very friendly to real-time applications. Taking the advantages of the kernel representation, we design a series of components as follows 1) a computationally efficient feature enhancement network composed of stacked Feature Pyramid Enhancement Modules (FPEMs); 2) a lightweight detection head cooperating with Pixel Aggregation (PA); and 3) an efficient attention-based recognition head with Masked RoI. Benefiting from the above designs, our method achieves high inference speed while maintaining competitive accuracy. Extensive experiments show the superiority of our method.Deep learning recognition approaches can potentially perform better if we can extract a discriminative representation that controllably separates nuisance factors. In this paper, we propose a novel approach to explicitly enforce the extracted discriminative representation d, extracted latent variation l (e,g., background, unlabeled nuisance attributes), and semantic variation label vector s (e.g., labeled expressions/pose) to be independent and complementary to each other. We can cast this problem as an adversarial game in the latent space of an auto-encoder. Specifically, with the to-be-disentangled s, we propose to equip an end-to-end conditional adversarial network with the ability to decompose an input sample into d and l. However, we argue that maximizing the cross-entropy loss of semantic variation prediction from d is not sufficient to remove the impact of s from d, and that the uniform-target and entropy regularization are necessary. A collaborative mutual information regularization framework is further proposed to avoid unstable adversarial training.
Homepage: https://www.selleckchem.com/products/finerenone.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.