Notes
![]() ![]() Notes - notes.io |
Over the last two decades, the development of chemical biology and the need for more defined protein conjugates have fostered active research on new bioconjugation techniques. In particular, a wide range of biorthogonal labelling strategies have been reported to functionalize the phenol side chain of tyrosines (Tyr). Tyr occur at medium frequency and are partially buried at the protein surface, offering interesting opportunities for site-selective labelling of the most reactive residues. Tyr-targeting has proved effective for designing a wide range of important biomolecules including antibody-drug conjugates, fluorescent or radioactive protein probes, glycovaccines, protein aggregates and PEG-conjugates. Innovative methods have also been reported for site-specific labelling with ligand-directed anchors and for specific affinity capture of proteins. This review will present and discuss these promising alternatives to the conventional labelling of the nucleophilic lysine and cysteine residues.The interests in sustained ocular drug delivery have grown rapidly in recent years, with hope to replace repeated intravitreal injections. Microneedles (MNs), which are minimally invasive, have been shown to be a feasible vehicle for sustained drug delivery. However, securing an MN patch in the eye remains challenging. In this study, a new design of hydrogel MNs with interlocking features to achieve self-adhesion is proposed. Upon swelling, the swollen interlocking features help secure the MNs in place. A new molding process is developed to fabricate MNs with interlocking features that can cause issues when demolding using the regular micromolding process. MNs with two different interlocking feature designs are used in this study and are made with polyvinyl alcohol. MNs with the interlocking features show an 80% increase in adhesion strength and a small amount of increase in penetration force, in comparison to MNs without any feature. The experiments are performed using both a sclera-mimicking phantom and ex vivo eyes harvested from rabbits and are shown to have comparable results. This study demonstrates the feasibility of incorporating interlocking features to MNs to achieve self-adhesion that can enable sustained drug delivery via MNs.The short neuropeptide F (sNPF) and NPF receptor (NPFR) genes play important roles in many physiological processes. However, information on the survival-related functions of sNPF and NPFR under different stress conditions is lacking in aphids. In this study, we cloned sNPF and NPFR, and investigated the expression levels of these genes in different developmental stages, wing morphs, and stress conditions of the bird cherry-oat aphid (Rhopalosiphum padi L.), an important agricultural pest. The sNPF and NPFR transcript levels varied among developmental stages, and their expression levels in alate females were significantly higher than those in apterous females. In addition, starvation resulted in significantly increased sNPF expression, which then recovered after refeeding. Heat stress and insecticides significantly affected transcription of both genes. read more sNPF and NPFR knockdown in R. padi using RNA interference revealed optimal interference efficiency at 48 h post-injection. sNPF knockdown significantly decreased adult longevity, 15-d fecundity, and food intake. Additionally, mortality under starvation, insecticides, and heat stress conditions was significantly higher after injection with dssNPF in R. padi. NPFR knockdown significantly affected food intake and starvation resistance in R. padi. These results strongly indicate that sNPF plays vital roles in food intake, longevity, and reproduction in R. padi, and it can significantly affect the pest's response to stress conditions. This article is protected by copyright. All rights reserved.Silicosis is a pneumoconiosis caused by inhaled crystalline silica microparticles, which trigger inflammatory responses and granuloma formation in pulmonary parenchyma, thus affecting lung function. Although systemic administration of mesenchymal stromal cells (MSCs) ameliorates lung inflammation and attenuates fibrosis in experimental silicosis, it does not reverse collagen deposition and granuloma formation. In an attempt to improve the beneficial effects of MSCs, magnetic targeting (MT) has arisen as a potential means of prolonging MSC retention in the lungs. In this study, MSCs were incubated with magnetic nanoparticles and magnets were used for in vitro guidance of these magnetized MSCs and to enhance their retention in the lungs in vivo. In vitro assays indicated that MT improved MSC transmigration and expression of chemokine receptors. In vivo, animals implanted with magnets for 48 hours had significantly more magnetized MSCs in the lungs, suggesting improved MSC retention. Seven days after magnet removal, silicotic animals treated with magnetized MSCs and magnets showed significant reductions in static lung elastance, resistive pressure, and granuloma area. In conclusion, MT is a viable technique to prolong MSC retention in the lungs, enhancing their beneficial effects on experimentally induced silicosis. MT may be a promising strategy for enhancing MSC therapies for chronic lung diseases.Aims This study describes the effect of phage therapy on hatching of longfin yellowtail (Seriola rivoliana) eggs challenged with Photobacterium damselae subsp. damselae. Methods and results A lytic phage (vB_Pd_PDCC-1) against P. damselae subsp. damselae was isolated and characterized. The use of phage vB_Pd_PDCC-1 increased the hatching rate of eggs, and reduced presumptive Vibrio species to non-detectable numbers, even in non-disinfected eggs. High-throughput 16S rRNA gene sequencing analysis revealed that phage vB_Pd_PDCC-1 caused significant changes in the composition and structure of the associated microbiota, allowing that members (e.g. those belonging to the family Vibrionaceae) of the class Gammaproteobacteria to be displaced by members of the class Alphaproteobacteria. Conclusions To the best of our knowledge, this represents the first study evaluating phage therapy to control potential negative effects of P. damselae subsp. damselae during hatching of longfin yellowtail eggs. Significance and impact of the study The Seriola genus includes several important commercial fish species due to its rapid growth and easy adaptability to confinement conditions.
Read More: https://www.selleckchem.com/products/1400w.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team