Notes
![]() ![]() Notes - notes.io |
To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. API-2 mouse At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.There is a strong relationship between the kidney and the heart, where if one of these organs fails, so does the other, in the so-called cardiorenal syndrome (CRS). Besides, there are also interactions with the rest of the body leading to a metabolic state that establishes a feedback loop that is perpetuated. The CRS is characterized by hemodynamic changes, activation of neuro-humoral systems, natriuretic peptides, and changes in mineral metabolism. In this scenario, the kidney and heart, connected by a dysfunctional endothelium, inevitably fail. In obesity, this syndrome is exacerbated due to the complications of adipose tissue dysfunction, in the so-called cardiorenal metabolic syndrome (CRMetS). Obesity promotes adipose tissue dysfunction because it exceeds lipid storage capacity and leads to a lipotoxic state, characterized by inflammation, hypertension, insulin resistance and dyslipidemia, oxidative stress, and hyperuricemia, among others, that affect different organs other than the adipose tissue. In addition, the pro-inflammatory gut microbiota present in obese patients releases uremic toxins, contributing to oxidative stress and inflammation, perpetuating and accelerating the progression of this pathology. In this article, we describe the contribution of obesity, the factors and mechanisms implicated in the development of the CRMetS. Despite the great knowledge about the CRS, more research is needed to characterize the CRMetS given the global obesity epidemic.
Several features contribute to determining suicide risk. This study was designed with the aim of evaluating whether insight into illness and demoralization are involved in suicide risk (active suicidal ideation or behavior).
For this purpose, in a sample of 100 adult psychiatric inpatients, we used the Columbia Suicide Severity Rating Scale to assess suicide risk, the Demoralization Scale for demoralization symptoms, and the Insight Scale to assess illness insight. We also investigated several demographic and clinical features, including gender, age, duration of untreated illness, previous suicide attempts, and nonsuicidal self-injurious behavior.
The results demonstrated that patients with higher scores on the insight-high dimension had 1.35 greater odds of having a higher suicide risk, and those with lifetime suicide attempts had 7.45 greater odds of having a higher suicide risk. Among the various clinical factors, the study indicated that only nonsuicidal self-harm behaviors in the last 3 months was a risk factor for suicide risk.
The results indicated that greater illness insight is involved in suicide risk regardless of demoralization.
The results indicated that greater illness insight is involved in suicide risk regardless of demoralization.
The presence of mercury in the environment is a worldwide concern. Inorganic mercury is present in industrial materials, is employed in medical devices, is widely used in batteries, is a component of fluorescent light bulbs, and it has been associated with human poisoning in gold mining areas. The nephrotoxicity induced by inorganic mercury is a relevant health problem mainly in developing countries. The primary mechanism of mercury toxicity is oxidative stress. Trimetazidine (TMZ) is an anti-ischemic drug, which inhibits cellular oxidative stress, eliminates oxygen-free radicals, and improves lipid metabolism. The aim of this study was to evaluate whether the administration of TMZ protects against mercuric chloride (HgCl2) kidney damage.
Adult male Wistar rats received only HgCl2 (4 mg/kg bw, sc) (Hg group, n = 5) or TMZ (3 mg/kg bw, ip) 30 min before HgCl2 administration (4 mg/kg bw, sc) (TMZHg group, n = 7). Simultaneously, a control group of rats (n = 4) was studied. After 4 days of HgCl2 injection, ue damage due to HgCl2-induced renal injury should be considered. The fact that TMZ is commercially available should simplify and accelerate the translation of the present data "from bench to bedside." In this context, TMZ become an interesting new example of drug repurposing.
TMZ exerted a renoprotective action against HgCl2-induced renal injury, which might be mediated by the reduction of oxidative stress. Considering the absence of toxicity of TMZ, its clinical application against oxidative damage due to HgCl2-induced renal injury should be considered. The fact that TMZ is commercially available should simplify and accelerate the translation of the present data "from bench to bedside." In this context, TMZ become an interesting new example of drug repurposing.
Read More: https://www.selleckchem.com/products/Triciribine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team