Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Enzyme-based assays have been extensively used for the early diagnosis of disease-related biomarkers. However, these assays are time-consuming, resource-intensive, and infrastructure-dependent, which renders them unsuitable and impractical for use in resource-constrained areas. Thus, there is a strong demand for a biocompatible and potentially generalizable sensor that can rapidly detect cancer biomarkers at ultralow concentration. Herein, an enzyme-free, cost-efficient, and easy-to-use assay based on a novel approach that entails fluorescent molecularly imprinting conjugated polythiophenes (FMICPs) for cancer biomarkers detection is developed. The promising conjugated polythiophenes structure, with a PLQY as high as 55%, provides a straightforward, and affordable method for free-enzyme signal generation. More importantly, the feasibility of integrating printed-paper technology with a sensitive and cost-effective smartphone and portable prototype testing device that could be utilized for rapid point-of-care (POC) cancer diagnostics is successfully introduced. Significantly, the unique structure of FMICP nanofibers (FMICP NFs) displays superior performance with enhanced sensitivity that is 80 times higher than that of pristine FMICP. This assay could lower the limits of detection to 15 fg mL-1 and 3.5 fg mL-1 for α-fetoprotein (AFP) and carcinoembryonic antigen (CEA), respectively, which are three orders of magnitude exceeding that of the standard enzyme-based assay. Moreover, the developed sensors are successfully applied to the fast diagnosis of AFP in liver cancer patients and the FMICP and FMICP NFs results are in excellent agreement with those of clinical ELISA. The progesterone (P4) level in body fluids can act as an indicator for early pregnancy diagnosis and offers insight into mammalian somatic function. In this work, we designed an antibody-aptamer based sandwich assay as a cathodic photoelectrochemical (PEC) biosensor for P4 detection. The composites of carbon dots and graphene oxide (CDs-GO) with favorable cathodic photocurrent response were used as photoactive materials on which the antibody (Ab) of P4 was immobilized. Meanwhile, high affinity truncated P4 aptamer was immobilized on Au-CuO-Cu2O to act as a bioconjugate. When P4 was present, the aptamer-Au-CuO-Cu2O bioconjugate could amplify the cathodic photocurrent of CDs-GO modified electrode through Ab-P4-aptamer interactions. Under optimum conditions, the cathodic photocurrent of the constructed PEC biosensor was found to increase linearly with P4 in a wide concentration range from 0.5 nM to 180 nM, with a low detection limit (3S/N) of 0.17 nΜ. The proposed cathodic PEC sensing platform demonstrated high selectivity, satisfying reproducibility, good stability. The sensor was successfully applied in the determination of P4 in human serum samples. While the monitoring of pH has demonstrated to be an effective technique to monitor an individual's health state, the design of wearable biosensors is subject to critical challenges, such as high fabrication costs, thermal drift, sensitivity to moisture, and the limited applicability for users with metal allergies. This work describes the low-cost fabrication of waterproof electronic decals (WPEDs) highly conformable disposable biosensors capable of monitoring sweat and vaginal pH. WPEDs contain a polyaniline/silver microflakes sensing layer optimized for accurate impedance-based pH quantification across the clinically relevant range of variation of most biofluids. WPEDs also contain a heating layer that serves to both stimulate sweating and prevent saturation of the sensing area, reducing the variability of the measurements. The conformability of WPEDs enables their simple and allergy-free attachment to skin, where they can monitor sweat pH, or to the surface of paper-based sample containers, for the pH-based diagnosis of bacterial vaginosis. WPEDs are mostly transparent, self-adhesive, breathable, flexible, moisture-insensitive, and able to maintain their accuracy under significant mechanical and thermal stresses. A cost-effective wearable and portable impedance analyzer wirelessly transmits pH data in real-time to the smartphone of the user, where a custom-developed App enables long term monitoring and telemedicine applications. Our results demonstrate the feasibility of using inexpensive single-use WPEDs and a reusable, wireless impedance analyzer to provide a wearable solution for the real-time monitoring of sweat pH and the accurate at-home diagnosis of bacterial vaginosis, improving the capabilities of current low-cost, point-of-care diagnostic tests. The seasonal variations of radon exhalation rate from soil surface were studied in two seismically active regions of the Russian Federation - the Baikal rift and the North Caucasus. In each region, monthly measurements of the radon exhalation have been carried out at two relatively proximal sites, one of which was located within the active fault zone and the other outside of the fault zone. The Open Charcoal Chamber Method was used. Very high radon exhalation rate values were found in the fault zones at both regions. At the Baikal rift, the radon exhalation reached 1.4 Bq m-2 s-1, and at the Caucasian region in some periods it even achieved 24 Bq m-2 s-1, which is an extremely high value. The same pattern of seasonal variations of radon levels with abnormal high radon exhalation rate values in summer and extremely low in winter were observed in both the Baikal and Caucasus regions. Clear correlation between radon exhalation and air temperature were also revealed. The obtained data and simulation results indicate that seasonal fluctuations in the radon exhalation rate are caused by the inversion of the direction of convective air flow in the fractured zones of the rock massif. In summer, the convective air flow is directed from the rock massif to the atmosphere and in winter, vice versa, from the atmosphere to the rock massif. This phenomenon is similar to the well-known "chimney effect", i. e. in winter there is a direct draft in the system of fractures, and in summer - the reverse one. Thus, the detected radon anomalies are due to near-surface convective air circulation in permeable zones of the mountain ranges and most probably are not associated with deep crustal or mantle degassing. Seasonal thermally induced radon anomalies should be taken into account both in the radon risk mapping and in the application of radon as a tracer of natural processes in various fields of geology and geophysics. this website
Homepage: https://www.selleckchem.com/products/yd23.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team