Notes
![]() ![]() Notes - notes.io |
Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that also has a role in cancer cell growth and metabolism. Recently, it was reported that NAT1 undergoes lysine acetylation, an important post-translational modification that can regulate protein function. In the current study, we use site-directed mutagenesis to identify K100 and K188 as major sites of lysine acetylation in the NAT1 protein. Acetylation of ectopically expressed NAT1 in HeLa cells was decreased by C646, an inhibitor of the protein acetyltransferases p300/CREB-binding protein (CBP). Recombinant p300 directly acetylated NAT1 in vitro. Acetylation of NAT1 was enhanced by the sirtuin (SIRT) inhibitor nicotinamide but not by the histone deacetylase inhibitor trichostatin A. Cotransfection of cells with NAT1 and either SIRT 1 or 2, but not SIRT3, significantly decreased NAT1 acetylation. NAT1 activity was evaluated in cells after nicotinamide treatment to enhance acetylation or cotransfection with SIRT1 to inhibit acetylation. The results indicated that NAT1 acetylation impaired its enzyme kinetics, suggesting decreased acetyl coenzyme A binding. In addition, acetylation attenuated the allosteric effects of ATP on NAT1. Taken together, this study shows that NAT1 is acetylated by p300/CBP in situ and is deacetylated by the sirtuins SIRT1 and 2. It is hypothesized that post-translational modification of NAT1 by acetylation at K100 and K188 may modulate NAT1 effects in cells. SIGNIFICANCE STATEMENT There is growing evidence that arylamine N-acetyltransferase 1 has an important cellular role in addition to xenobiotic metabolism. Here, we show that NAT1 is acetylated at K100 and K188 and that changes in protein acetylation equilibrium can modulate its activity in cells.Aberrant cellular Myc (c-Myc) is a common feature in the majority of human cancers and has been linked to oncogenic malignancies. find more Here, we developed a novel c-Myc-targeting compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), and present evidence demonstrating its effectiveness in targeting c-Myc for degradation in human lung carcinoma. EMD exhibited strong cytotoxicity toward various human lung cancer cell lines, as well as chemotherapeutic-resistant patient-derived lung cancer cells, through apoptosis induction in comparison with chemotherapeutic drugs. The IC50 of EMD against lung cancer cells was approximately 60 µM. Mechanistically, EMD eliminated c-Myc in the cells and initiated caspase-dependent apoptosis cascade. Cycloheximide chase assay revealed that EMD tended to shorten the half-life of c-Myc by approximately half. The cotreatment of EMD with the proteasome inhibitor MG132 reversed its c-Myc-targeting effect, suggesting the involvement of ubiquitin-mediated proteasomal degradation in the process. We further verified that EMD strongly induced the ubiquitination of c-Myc and promoted protein degradation. c-Myc inhibition and apoptosis induction were additionally shown in hematologic malignant K562 cells, indicating the generality of the observed EMD effects. Altogether, we identified EMD as a novel potent compound targeting oncogenic c-Myc that may offer new opportunities for lung cancer treatment. SIGNIFICANCE STATEMENT The deregulation of c-Myc is frequently associated with cancer progression. This study examined the effect of a new compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), in targeting c-Myc in several lung cancer cell lines and drug-resistant primary lung cancer cells. EMD induced dramatic c-Myc degradation through a ubiquitin-proteasomal mechanism. The promising anticancer and c-Myc-targeted activities of EMD support its use in potential new approaches to treat c-Myc-driven cancer.Intrinsically disordered proteins (IDPs) abound in cellular regulation. Their interactions are often transitory and highly sensitive to salt concentration and posttranslational modifications. However, little is known about the effect of macromolecular crowding on the interactions of IDPs with their cellular targets. Here, we investigate the influence of crowding on the interaction between two IDPs that fold upon binding, with polyethylene glycol as a crowding agent. Single-molecule spectroscopy allows us to quantify the effects of crowding on a comprehensive set of observables simultaneously the equilibrium stability of the complex, the association and dissociation kinetics, and the microviscosity, which governs translational diffusion. We show that a quantitative and coherent explanation of all observables is possible within the framework of depletion interactions if the polymeric nature of IDPs and crowders is incorporated based on recent theoretical developments. The resulting integrated framework can also rationalize important functional consequences, for example, that the interaction between the two IDPs is less enhanced by crowding than expected for folded proteins of the same size.Clinical research should conform to high standards of ethical and scientific integrity, given that human lives are at stake. However, economic incentives can generate conflicts of interest for investigators, who may be inclined to withhold unfavorable results or even tamper with data in order to achieve desired outcomes. To shed light on the integrity of clinical trial results, this paper systematically analyzes the distribution of P values of primary outcomes for phase II and phase III drug trials reported to the ClinicalTrials.gov registry. First, we detect no bunching of results just above the classical 5% threshold for statistical significance. Second, a density-discontinuity test reveals an upward jump at the 5% threshold for phase III results by small industry sponsors. Third, we document a larger fraction of significant results in phase III compared to phase II. Linking trials across phases, we find that early favorable results increase the likelihood of continuing into the next phase. Once we take into account this selective continuation, we can explain almost completely the excess of significant results in phase III for trials conducted by large industry sponsors. For small industry sponsors, instead, part of the excess remains unexplained.
Here's my website: https://www.selleckchem.com/products/c188-9.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team