Notes
![]() ![]() Notes - notes.io |
In summary, this study demonstrated that NPs exposure brings about toxic effects to mice. This study could provide new insights regarding the distribution of NPs in humans, and helps us to evaluate the potential physiological risks of NPs to human beings.Biomineralization is often used by microorganisms to sequester heavy metal ions and provides a potential means for remediating increasing levels of heavy metal pollution. Bacteria have been shown to utilize cysteine for the biomineralization of metal sulfide. Indeed, in the present study, the supplement of L-cysteine was found to significantly improve both cadmium resistance and removal abilities of a deep-sea bacterium Pseudomonas stutzeri 273 through cadmium sulfide (CdS) nanoparticle biomineralization. With a proteomic approach, threonine dehydratase of P. stutzeri 273 (psTD) was proposed to be a key factor enhancing bacterial cadmium resistance through catalyzing L-cysteine desulfuration, H2S generation and CdS nanoparticle biomineralization. Consistently, deletion of the gene encoding psTD in P. stutzeri 273 resulted in the decline of H2S generation, decrease of cadmium resistance, and reduction of cadmium removal ability, confirming the unique function of psTD directing the formation of CdS nanoparticles. Correspondingly, the single-enzyme biomineralization of CdS nanoparticle driven by psTD was further developed, and psTD was shown to act as a capping reagent for the mineralization reaction, which controlling the size and structure of nanocrystals. SMAPactivator Our results provide important clues for the construction of engineered bacteria for cadmium bioremediation and widen the synthesis methods of nanomaterials.Microplastics as the most challenging environmental pollutants in ocean have raised increasing concerns, however, the understanding of microplastics in freshwater falls far behind. The main objective of this study is to assess the microplastic pollution in an urbanized river affected by water diversion. The active biomonitoring method with caged native crucian carp (Carassius auratus) was used to evaluate the microplastic risk for riverine fish. It found that microplastic abundance in water and sediment was 1467-20567 items/m³ and 1115-6380 items/kg, respectively. The operational water diversion did not alleviate the microplastic pollution in water. The abundance in sediment was not simply proportional to that in water. However, the main morphological profiles and polymer composition were similar in the water and sediment. Microplastic accumulation in caged fish intestine was higher than that in gill. Intestine seems to be an ideal tissue to reflect the microplastic pollution in water. Shapes may contribute to the accumulation in fish. Based on the pollution load index, all caged fish did not reach to high level risks. These findings not only improve the understanding on the impact of water diversion on microplastic pollution in urban river, but also shed an insight in the related risk for riverine fish.Microwavable plastic food containers (MPFCs) are extensively used for food storage, cooking, rapid heating and as take-out containers. There is an urgent need to investigate whether MPFCs pose potential health risks, as a result of the migration of chemicals into foods. Herein, 42 intentionally added substances (IAS) and > 100 non-IAS (NIAS) migrating from MPFCs were identified in food simulants according to Regulation (EU). The migration of major IAS and NIAS was higher in 95% ethanol compared to other simulants, and gradually decreased following repeated use. NIAS, including Cramer class III toxic compounds, such as PEG oligomers of N,N-bis(2-hydroxyethyl) alkyl(C8-C18)amines, isomers of hexadecanamide and oleamide, and Irgafos 168 OXO were detected and exceeded the recommended limits in some MPFCs. Furthermore, microplastics (MPs) were detected with high values of over one million particles/L in some MPFCs in a single test, and migration behaviors of MPs in different MPFCs were diverse. Surprisingly, this rigorous migration might result in an annual intake of IAS/NIAS up to 55.15 mg and 150 million MPs particles if take-out food was consumed once a day. Multi-safety evaluation studies on the migration of various chemicals from MPFCs to foodstuffs during food preparation should be assessed.The aim of this article is to review and present the state of the arte about the status of toxic elements (TEs) in soils and assess the potential risk using single and total complex pollution indices in a global scale. We compiled, integrated, and analyzed soil TE pollution data over almost a decade through key maps, which have not been reviewed up to date. All the in-situ and ex-situ remediation treatments have been also reviewed, illustrated, and compared, for the first time. The future perspectives have been discussed and summarized. This review demonstrates that the cornerstone maps and integrated information provide reliable geographical coordinates and inclusive information on TEs pollution, particularly in China. In-situ treatment approaches for TEs polluted soils are more cost-effective and applicable than ex-situ treatment trials. Selecting a feasible remediation strategy should to take the extent of contamination, treatment objectives, site characteristics, cost-efficiency, and public suitability into account. The summarized findings in this review may help to develop innovative and applicable methods for assessing the global soil pollution by TEs. Also, these findings may help to develop innovative, applicable, and feasibly economic methods for sustainable management of TEs contaminated soils to mitigate the environmental and human health risk.Water quality is closely associated with human health and socio-economic sustainable development. With the increasingly intensive anthropogenic activities, pollutants especially trace elements, enter water aquatic system and cause harm to humans. This study conducted the first systematic comparison on the pollution status of surface water and groundwater in China. Water quality and health risk assessment of 12 trace elements were evaluated according to the water quality index (WQI), hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR). The results showed that the average values of trace elements in the majority of surface water were higher than those in groundwater. The WQI values demonstrated that 86.02% of surface water and 83.11% of groundwater were suitable for drinking water. Arsenic served as the predominant pollutant and contributed significantly to cause the non‑carcinogenic risk on human health in both surface water and groundwater, children were more vulnerable to the adverse effects than adults.
Homepage: https://www.selleckchem.com/products/dt-061-smap.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team