Notes
![]() ![]() Notes - notes.io |
An effective method to fabricate a dendrite-free Na-Na2S-carbon hybrid anode is developed by immersing sulfur-doped carbon paper into molten sodium with common tissue paper as the starting material. The as-obtained hybrid anode displays much decreased nucleation and mass-transfer-controlled overpotentials for sodium plating, and a low and stable voltage hysteresis of ∼150 mV is obtained under a current density of 4 mA cm-2. It provides a dendrite-free sodium-based anode with superior rate performance and long-term stability. Furthermore, it provides an effective avenue to alleviate the growth of dendrites and lower the overpotentials for other kinds of metal-based electrodes.Rubbery polymer membranes prepared from CO2-philic PEO and/or highly permeable PDMS are desired for efficient CO2 separation from light gases (CH4 and N2). see more Poor mechanical properties and size-sieving ability, however, limit their application in gas separation applications. Cross-linked rubbery polymer-based gas separation membranes with a low Tg based on both PEG/PPG and PDMS units with various compositions between these two units are prepared for the first time in this work by ring-opening metathesis polymerization type cross-linking and in situ membrane casting. The developed membranes display excellent CO2 separation performance with CO2 permeability ranging from 301 to 561 Barrer with excellent CO2/N2 selectivity ranging from 50 to 59, overcoming the Robeson upper bound (2008). The key finding underlying the excellent performance of the newly developed cross-linked x(PEG/PPGPDMS) membranes is the formation of a well-connected interlocked network structure, which endows the rubbery materials with the properties of rigid polymers, e.g., size-sieving ability and high thermomechanical stability. Moreover, the membrane shows long-term antiaging performance of up to eight months and antiplasticization behavior up to 25 atm pressure.Marine macroalgae, seaweeds, are exceptionally prolific producers of halogenated natural products. Biosynthesis of halogenated molecules in seaweeds is inextricably linked to reactive oxygen species (ROS) signaling as hydrogen peroxide serves as a substrate for haloperoxidase enzymes that participate in the construction these halogenated molecules. Here, using red macroalga Asparagopsis taxiformis, a prolific producer of the ozone depleting molecule bromoform, we provide the discovery and biochemical characterization of a ROS-producing NAD(P)H oxidase from seaweeds. This discovery was enabled by our sequencing of Asparagopsis genomes, in which we find the gene encoding the ROS-producing enzyme to be clustered with genes encoding bromoform-producing haloperoxidases. Biochemical reconstitution of haloperoxidase activities establishes that fatty acid biosynthesis can provide viable hydrocarbon substrates for bromoform production. The ROS production haloperoxidase enzymology that we describe here advances seaweed biology and biochemistry by providing the molecular basis for decades worth of physiological observations in ROS and halogenated natural product biosyntheses.Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.Chemical characterization of complex mixtures of large saturated hydrocarbons is critically important for numerous fields, including petroleomics and renewable transportation fuels, but difficult to achieve. Atmospheric pressure chemical ionization (APCI) mass spectrometry has shown some promise in the analysis of saturated hydrocarbons. However, APCI causes extensive fragmentation to these compounds, which impedes its effectiveness. To prevent this fragmentation, its causes were examined via gas-phase ion-molecule reactions in vacuum in a linear quadrupole ion trap mass spectrometer. The results demonstrate that the mechanism proposed previously for ionization of saturated hydrocarbons upon APCI, hydride abstraction by carbocation reagent ions, is not correct. Instead, the fragmentation is caused by ionization of saturated hydrocarbons via exothermic proton-transfer reactions involving highly acidic, protonated atmospheric molecules, such as nitrogen and water. Accordingly, the extent of fragmentation was found to correlate with the proton affinities of the atmospheric molecules studied. Remarkably, controlled experiments involving isolated atmospheric ions and neat saturated hydrocarbons in vacuum yielded almost identical mass spectra as APCI involving atmospheric pressure conditions, the presence of many different chemicals, and an electrical discharge. In order to prevent or reduce the extent of fragmentation of saturated hydrocarbons upon APCI, and therefore enable accurate mass spectrometric characterization of complex mixtures of saturated hydrocarbons, the ion source should be purged of air to remove nitrogen and water and fill it with an inert gas with a substantially lower proton affinity.In this work, a surface cationized inorganic-organic hybrid foam was produced from porous geopolymer (GP) and cellulose nanocrystals (CNCs). GPs were synthesized from alkali-activated metakaolin using H2O2 as a blowing agent and hexadecyltrimethylammonium bromide (CTAB) as a surfactant. These highly porous GPs were combined at pH 7.5 with cationic CNCs that had been synthesized from dissolving pulp through periodate oxidation followed by cationization in a deep eutectic solvent. The GP-CNC hybrid foams were employed as reactive filters in the removal of the anionic dye, methyl orange (MO; 5-10 mg/L, pH 7). The effects of a mild acid wash and thermal treatments on the structure, properties, and adsorption capacity of the GPs with CNCs and MO were investigated. The CNCs aligned as films and filaments on the surfaces of the neutralized GPs and the addition of CNCs improved MO removal by up to 84% compared with the reference sample. In addition, CTAB was found to disrupt the attachment of CNCs on the pores and improve adsorption of MO in the GPs with and without CNCs.
Website: https://www.selleckchem.com/products/opb-171775.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team