Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We expect that this live cell membrane-spanning synthetic DNA nanopore will provide a tool for studying cellular communication, building synthetic cells, and achieving controlled transmembrane transport to cells.ConspectusCovalent organic frameworks (COFs) represent a novel type of crystalline porous polymers with potential applications in many areas. Considering their covalent connectivity in different dimensions, COFs are classified as two-dimensional (2D) layered structures or three-dimensional (3D) networks. In particular, 3D COFs have gained increasing attention recently because of their remarkably large surface areas (>5000 m2/g), hierarchical nanopores and numerous open sites. However, it has been proven to be a major challenge to construct 3D COFs, as the main driving force for their synthesis comes from the formation of covalent bonds. In addition, there are several stones on the roads blocking the development of 3D COFs. First, the successful topology design strategies of 3D COFs have been limited to [4 + 2] or [4 + 3] condensation reactions of the tetrahedral molecules with linear or triangular building blocks in the first decade, which led to only three available topologies (ctn, bor, and dia) and strongls field.Economical production of highly active and robust Pt catalysts on a large scale is vital to the broad commercialization of polymer electrolyte membrane fuel cells. Here, we report a low-cost, one-pot process for large-scale synthesis of single-crystal Pt multipods with abundant high-index facets, in an aqueous solution without any template or surfactant. A composite consisting of the Pt multipods (40 wt %) and carbon displays a specific activity of 0.242 mA/cm2 and a mass activity of 0.109 A/mg at 0.9 V (versus a reversible hydrogen electrode) for oxygen reduction reaction, corresponding to ∼124% and ∼100% enhancement compared with those of the state-of-the-art commercial Pt/C catalyst (0.108 mA/cm2 and 0.054 A/mg). The single-crystal Pt multipods also show excellent stability when tested for 4500 cycles in a potential range of 0.6-1.1 V and another 2000 cycles in 0-1.2 V. More importantly, the superior performance of the Pt multipods/C catalyst is also demonstrated in a membrane electrode assembly (MEA), achieving a power density of 774 mW/cm2 (1.29 A/cm2) at 0.6 V and a peak power density of ∼1 W/cm2, representing 34% and 20% enhancement compared with those of a MEA based on the state-of-the-art commercial Pt/C catalyst (576 and 834 mW/cm2).Interfacial bonding between a fiber and a matrix plays an essential role in composites, especially in fiber-reinforced cementitious composites that are superior forms for bearing flexural and tension load in construction applications. Yet, despite the importance, effective and economic approaches to improve the interfacial bonding between a steel fiber and a cementitious matrix remain unfeasible. Herein, we report a pathway adopting a silane coupling agent (SCA) to modify an interfacial transition zone (ITZ) and enhance interfacial bonding. This approach involves coating a SCA layer onto a steel fiber, where tight physical and chemical bondings (via cross-linking of silicate chains) with a cementitious matrix are formed, leading to an 83.5% increase in pullout energy. Combining nanoindentation and an atomistic force microscope with molecular simulation, we find that SCA increases the surface roughness of the steel fiber, accelerates the hydration reaction of cement clinker, and promotes the volume fraction of the C-S-H phase, inducing a denser and more uniform ITZ with an adequate stress-transfer capability that shifts the mode of failure from interfacial debonding to cement cracking. This work presents an effective and economical approach to improve interfacial bonding, and it enables us to design more durable fiber-reinforced cementitious composites, which can be massively used to build innovative infrastructures.Although the dielectric behavior of monolayers is important in a large range of applications, its role in charge transport studies involving molecular junctions is largely ignored. This paper describes a large increase in the relative static dielectric constant (εr) by simply increasing the thickness of well-organized monolayers of oligoglycine and oligo(ethylene glycol) from 7 up to 14. The resulting large capacitance of 3.5-5.1 μF/cm2 is thickness-independent, which is highly attractive for field-effect transistor applications. This increase of εr results in a linear increase of the thermal activation energy by a factor of 6, which suggests that the mechanism of charge transport gradually changes from coherent to (partially) incoherent tunneling. The comparisons of oligoglycine (which readily forms hydrogen bonds with neighboring molecules) and methyl terminated oligo(ethylene glycol) (which lacks hydrogen bond donors) monolayers, kinetic isotope effects, and relative humidity-dependent measurements all indicate the importance of strong hydrogen bonds involving ionic species and strongly bonded water in the unusual dielectric behavior and the incoherent tunneling mechanism. This partial loss of coherence of the charge carriers can explain the unusually small tunneling decay coefficients across long molecular wires, and the length-dependent increase of εr of monolayers opens up interesting new applications.Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. this website Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.
Website: https://www.selleckchem.com/products/lxs-196.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team