Notes
Notes - notes.io |
The connections in a graph generate a structure that is independent of a coordinate system. This visual metaphor allows creating a more flexible representation of data than a two-dimensional scatterplot. AMPK inhibitor In this work, we present STAD (Simplified Topological Abstraction of Data), a parameter-free dimensionality reduction method that projects high-dimensional data into a graph. STAD generates an abstract representation of high-dimensional data by giving each data point a location in a graph which preserves the approximate distances in the original high-dimensional space. The STAD graph is built upon the Minimum Spanning Tree (MST) to which new edges are added until the correlation between the distances from the graph and the original dataset is maximized. Additionally, STAD supports the inclusion of additional functions to focus the exploration and allow the analysis of data from new perspectives, emphasizing traits in data which otherwise would remain hidden. We demonstrate the effectiveness of our method by applying it to two real-world datasets traffic density in Barcelona and temporal measurements of air quality in Castile and León in Spain.Hierarchical clustering is an important technique to organize big data for exploratory data analysis. However, existing one-size-fits-all hierarchical clustering methods often fail to meet the diverse needs of different users. To address this challenge, we present an interactive steering method to visually supervise constrained hierarchical clustering by utilizing both public knowledge (e.g., Wikipedia) and private knowledge from users. The novelty of our approach includes 1) automatically constructing constraints for hierarchical clustering using knowledge (knowledge-driven) and intrinsic data distribution (data-driven), and 2) enabling the interactive steering of clustering through a visual interface (user-driven). Our method first maps each data item to the most relevant items in a knowledge base. An initial constraint tree is then extracted using the ant colony optimization algorithm. The algorithm balances the tree width and depth and covers the data items with high confidence. Given the constraint tree, the data items are hierarchically clustered using evolutionary Bayesian rose tree. To clearly convey the hierarchical clustering results, an uncertainty-aware tree visualization has been developed to enable users to quickly locate the most uncertain sub-hierarchies and interactively improve them. The quantitative evaluation and case study demonstrate that the proposed approach facilitates the building of customized clustering trees in an efficient and effective manner.The trend of rapid technology scaling is expected to make the hardware of high-performance computing (HPC) systems more susceptible to computational errors due to random bit flips. Some bit flips may cause a program to crash or have a minimal effect on the output, but others may lead to silent data corruption (SDC), i.e., undetected yet significant output errors. Classical fault injection analysis methods employ uniform sampling of random bit flips during program execution to derive a statistical resiliency profile. However, summarizing such fault injection result with sufficient detail is difficult, and understanding the behavior of the fault-corrupted program is still a challenge. In this work, we introduce SpotSDC, a visualization system to facilitate the analysis of a program's resilience to SDC. SpotSDC provides multiple perspectives at various levels of detail of the impact on the output relative to where in the source code the flipped bit occurs, which bit is flipped, and when during the execution it happens. SpotSDC also enables users to study the code protection and provide new insights to understand the behavior of a fault-injected program. Based on lessons learned, we demonstrate how what we found can improve the fault injection campaign method.Interactive visualization has become a powerful insight-revealing medium. However, the close dependency of interactive visualization on its data inhibits its shareability. Users have to choose between the two extremes of (i) sharing non-interactive dataless formats such as images and videos, or (ii) giving access to their data and software to others with no control over how the data will be used. In this work, we fill the gap between the two extremes and present a new system, called Loom. Loom captures interactive visualizations as standalone dataless objects. Users can interact with Loom objects as if they still have the original software and data that created those visualizations. Yet, Loom objects are completely independent and can therefore be shared online without requiring the data or the visualization software. Loom objects are efficient to store and use, and provide privacy preserving mechanisms. We demonstrate Loom's efficacy with examples of scientific visualization using Paraview, information visualization using Tableau, and journalistic visualization from New York Times.Recognition of facial expressions across various actors, contexts, and recording conditions in real-world videos involves identifying local facial movements. Hence, it is important to discover the formation of expressions from local representations captured from different parts of the face. So in this paper, we propose a dynamic kernel-based representation for facial expressions that assimilates facial movements captured using local spatio-temporal representations in a large universal Gaussian mixture model (uGMM). These dynamic kernels are used to preserve local similarities while handling global context changes for the same expression by utilizing the statistics of uGMM. We demonstrate the efficacy of dynamic kernel representation using three different dynamic kernels, namely, explicit mapping based, probability-based, and matching-based, on three standard facial expression datasets, namely, MMI, AFEW, and BP4D. Our evaluations show that probability-based kernels are the most discriminative among the dynamic kernels. However, in terms of computational complexity, intermediate matching kernels are more efficient as compared to the other two representations.
Homepage: https://www.selleckchem.com/products/dorsomorphin-2hcl.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team