Notes
![]() ![]() Notes - notes.io |
Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.Immunodeficient mice engrafted with human tissues provide a robust model for the in vivo investigation of human-restricted viruses such as human cytomegalovirus (HCMV). Several humanized mouse models have been developed and improved over the last 30 years. Here, we describe a protocol for the transplant of human hematopoietic stem cells with autologous fetal liver and thymic tissues into NOD.Cg-PrkdcscidIL2rγtm1Wjl mice to create a humanized bone marrow-liver-thymus model (huBLT) that can be infected with HCMV. The presence of human thymus allows the development of a functional human immune system, including HLA-restricted human T-cells and B-cells. Indeed, following infection, huBLT mice generate virus-specific CD4+ and CD8+ T-cell responses. Additionally, both HCMV-specific IgM and IgG B-cell responses can be detected. This huBLT model provides the first animal model to explore the adaptive human immune response to HCMV infection.microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to sites within the 3' untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to detect, express and inhibit miRNAs, as well as methods used to identify and validate their targets, specifically with respect to the miRNAs encoded by human cytomegalovirus.Since its introduction in 1971, the enzyme-linked immunosorbent assay (ELISA) has revolutionized medicine by enabling detection of both antigens and antibodies in a variety of samples. We describe here a customized sandwich ELISA developed for the detection of Human Cytomegalovirus interleukin-10 (cmvIL-10). CmvIL-10 is a virally encoded cytokine and ortholog of human interleukin 10 (hIL-10). While cmvIL-10 and hIL-10 are similar in structure and function, overall amino acid sequence identity is only 27%, resulting in antigenically distinct proteins. The cmvIL-10 ELISA is specific and does not detect hIL-10. BLZ945 mw The assay is sensitive enough to detect cmvIL-10 in both culture supernatants and patient serum. The ability to quantify cmvIL-10 levels during HCMV infection could provide valuable information about immune evasion strategies and viral control of host signaling pathways.The generation and release of mature virions from human cytomegalovirus (HCMV) infected cells is a multistep process, involving a profound reorganization of cellular structures and various stages of virus particle morphogenesis in different cellular compartments. Although the general steps of HCMV morphogenesis are known, it has become clear that the detailed molecular mechanisms are complex and dependent on various viral factors and cellular pathways. The lack of a full understanding of HCMV virion morphogenesis emphasizes the need of imaging techniques to visualize the different stages of virion assembly, such as electron microscopy. Here, we describe various electron microscopy techniques and the methodology of high-pressure freezing and freeze substitution for sample preparation to visualize HCMV morphogenesis. These methods are used in our laboratory in combination with a thorough quantification to characterize phenotypic alterations and to identify the function of viral and cellular proteins for the various morphogenesis stages.Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens enable virus-host genetic screens to be undertaken in a more robust manner than previously possible and has had a tremendous impact in the field of virus study. Researchers can take advantage of the power of CRISPR genetic screens to discover virus-host interaction genes including host receptors and signaling molecules (Bazzone et al., mBio 10 (1) e02734-18, 2019; E et al., Proc Natl Acad Sci U S A 116(14)7043-7052, 2019; McDougall et al., Curr Opin Virol 2987-100, 2018; Savidis et al., Cell Rep 16(1)232-246, 2016). In principle, lysis of cells late in the virus infection cycle allows one to screen for essential genes using pooled single-guide RNAs (sgRNAs) that collective target an entire host cell genome simply by identifying mutant cells that are resistant to virus-induced cell death. Here we focus on using this technique on epithelial cells to identify host targets required for human cytomegalovirus (HCMV) infection.During the binding and infection of monocytes, HCMV binds to at least two major cell surface receptors/receptor families the epidermal growth factor receptor (EGFR) to initiate downstream signaling through the EGFR-PI3K pathway, and to β1- and β3-integrins to initiate downstream signaling through the integrin-c-Src pathway (Nogalski et al. PLoS Pathog 9e1003463, 2013; Chan et al. Proc Natl Acad Sci U S A 10622369-22374, 2009; Kim et al. Proc Natl Acad Sci U S A 1138819-8824, 2016; Wang et al. Nature 424456-461, 2003; Wang et al. Nat Med 11515-521, 2005; Yurochko et al. Proc Natl Acad Sci U S A 899034-9038, 1992). Signaling through these receptors can occur rapidly with phosphorylation observed as early as 15 s after EGF-EGFR interaction, for example (Alvarez-Salamero et al. Front Immunol 8938, 2017). The ability to detect signaling and the consequences of that signaling are critical for our understanding of how HCMV-receptor engagement promotes infection and modulates the biology of different target cells. In this chapter we describe how we used an ELISA-based antibody platform to perform an assessment of the rapid phosphorylation events that occur in monocytes following infection.
Read More: https://www.selleckchem.com/products/blz945.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team