Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The prevalence of sleep disturbance was 17.65-81% in the general population. Physiologic and social-psychological factors contributed to sleep disturbance of the general population during COVID-19 pandemic. In summary, the sleep disturbance was highly prevalent during COVID-19 pandemic. Specific health strategies should be implemented to tackle sleep disturbance.
Although the deterioration of subjective and objective alertness during prolonged wakefulness has been investigated rigorously, whether perceived sleepiness and fatigue are consistent with actual decrements in behavioral performance in the time course is still disputed. www.selleckchem.com/MEK.html The present study examined the dissociation between decrements of subjective alertness and performance deficits during prolonged wakefulness of one night and explored the relationship between body temperature and the impairments of subjective and objective alertness.
Thirty-eight participants (27 females; age 21.76 ± 2.37 years old) underwent prolonged wakefulness for one night at habitual bedtime (000-600 am). Participants completed a 10-min PVT to assess objective alertness, fatigue, and sleepiness ratings to assess subjective alertness every 2 hours, and body temperature was measured every hour during scheduled wakefulness.
Subjective alertness reflected a linear decline with time, but the magnitudes of objective performance deterioration increased significantly between 400 and 600 am. The increasing magnitudes of performance deficits were associated with the change of body temperature between 400 and 600 am.
These results indicate that the perceived degree of decline in alertness is temporally dissociated with the actual decline in objective vigilance with increased duration of wakefulness. The dissociation of magnitudes of subjective and objective alertness decrements mainly occurs between 400 and 600 am, and the changes of performance deficits have a relationship with body temperature.
These results indicate that the perceived degree of decline in alertness is temporally dissociated with the actual decline in objective vigilance with increased duration of wakefulness. The dissociation of magnitudes of subjective and objective alertness decrements mainly occurs between 400 and 600 am, and the changes of performance deficits have a relationship with body temperature.
The thalamus, the region that forms the attentional network and transmits external sensory signals to the entire brain, is important for sleepiness. Herein, we examined the relationship between activity in the thalamus-seed brain network and subjective sleepiness.
Fifteen healthy male participants underwent an experiment comprising a baseline evaluation and two successive interventions, a 9-day sleep extension followed by 1-night total sleep deprivation. Pre- and post-intervention tests included the Karolinska sleepiness scale and neuroimaging for arterial spin labeling and functional connectivity. We examined the association between subjective sleepiness and the functional magnetic resonance imaging indices.
The functional connectivity between the left or right thalamus and various brain regions displayed a significant negative association with subjective sleepiness, and the functional connectivity between the left and right thalamus displayed a significant positive association with subjective sleepineuggesting that the control of sleep and conscious states is essential when using functional magnetic resonance imaging indices as biomarkers.
Subjective sleepiness and the thalamic-cortical network dynamics are strongly related, indicating the application of graph theory to study sleepiness and consciousness. These results also demonstrate that resting functional connectivity largely reflects the "state" of the subject, suggesting that the control of sleep and conscious states is essential when using functional magnetic resonance imaging indices as biomarkers.
There is great interest in unobtrusive long-term sleep measurements using wearable devices based on reflective photoplethysmography (PPG). Unfortunately, consumer devices are not validated in patient populations and therefore not suitable for clinical use. Several sleep staging algorithms have been developed and validated based on ECG-signals. However, translation from these techniques to data derived by wearable PPG is not trivial, and requires the differences between sensing modalities to be integrated in the algorithm, or having the model trained directly with data obtained with the target sensor. Either way, validation of PPG-based sleep staging algorithms requires a large dataset containing both gold standard measurements and PPG-sensor in the applicable clinical population. Here, we take these important steps towards unobtrusive, long-term sleep monitoring.
We developed and trained an algorithm based on wrist-worn PPG and accelerometry. The method was validated against reference polysomnography in atudy shows the feasibility of automatic wearable sleep staging in patients with a broad variety of sleep disorders and a wide age range. Results demonstrate the potential for ambulatory long-term monitoring of clinical populations, which may improve diagnosis, estimation of severity and follow up in both sleep medicine and research.
We performed comparative proteomic analyses of blood of patients with RLS and healthy individuals aiming to identify potential biomarker and therapeutic target candidate for RLS.
Blood serum samples from 12 patients with a clinical diagnosis of RLS (8 females and 4 males, with a mean age of 68.52 years) and 10 healthy controls (5 females and 5 males, with a mean age of 67.61 years) underwent proteomic profiling by liquid chromatography coupled with tandem mass spectrometry. Pathway analysis incorporating protein-protein interaction networks was carried out to identify pathological processes linked to the differentially expressed proteins.
We quantified 272 proteins in patients with RLS and healthy controls, of which 243 were shared. Five proteins - apolipoprotein C-II, leucine-rich alpha-2-glycoprotein 1, FLJ92374, extracellular matrix protein 1, and FLJ93143 - were substantially increased in RLS patients, whereas nine proteins - vitamin D-binding protein, FLJ78071, alpha-1-antitrypsin, CD5 antigen-like, haptoglobin, fibrinogen alpha chain, complement factor H-related protein 1, platelet factor 4, and plasma protease C1 inhibitor - were decreased.
Website: https://www.selleckchem.com/MEK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team