Notes
Notes - notes.io |
Being a carbon-based hybrid, graphene-semiconductor composites have attracted considerable attention in recent decades owing to their potential features such as high photosensitivity, extended light absorption, and effective separation of charge carriers, thus have been regarded as a promising platform for environmental and biomedical applications, respectively. In this mini-review, we first summarized the recent advancements in the development of graphene-based semiconductor nanocomposites via sol-gel, solution mixing, in situ growth, hydrothermal, and solvothermal approaches, and then comprehensively reviewed their potential light activated cancer phototherapeutic applications. Finally, we rationally analyze the current challenges and new perspectives for the future development of more effective phototherapeutic nanoagents. We hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene/semiconductor hybrids for cancer phototherapy.Using first-principles calculations, we have studied the band-gap modulation as function of applied strain in black phosphorene (BP). Dynamical stability has been assessed as well. Three cases have been considered, in the first and second, the strain was applied uniaxially, in thex- andy-axis, separately. In the third, an isotropic in-plane strain was analyzed. Different strain percentages have been considered, ranging from 4% to 20%. The evolution of the band-gap is studied by using standard DFT and the G0W0approach. The band-gap increases for small strains but then decreases for higher strains. A change in electronic behavior also takes place the strained systems change from direct to indirect band-gap semiconductor, which is explained in terms of thesandp-orbitals overlap. Our study shows that BP is a system with a broad range of applications in band-gap engineering, or as part of van der Waals heterostructures with materials of larger lattice parameters. selleck compound Its stability, and direct band-gap behavior are not affected for less than 16% of uniaxial and biaxial strain. Our findings show that phosphorene could be deposited in a large number of substrates without losing its semiconductor behavior.This paper proposes a multiphysics computational framework coupling bio-mechanics and aerodynamics for the simulation of bird flight. It features a bio-mechanical model based on the anatomy of a bird, that models the bones and feathers of the wing. The aerodynamic solver relies on a vortex particle-mesh method and represents the wing through an immersed lifting line, acting like a source of vorticity in the flow. An application of the numerical tool is presented in the modeling of the flight of a Northern Bald Ibis (Geronticus Eremita). The wing kinematics are imposed based on biological observations and controllers are developed to enable stable flight in closed-loop. Their design is based on a linearized model of flapping flight dynamics. The controller solves an under-determination in the control parameters through minimization. The tool and the controllers are used in two simulations a first where the bird has to trim itself at a given flight speed, and another where it has to accelerate from a trimmed state to another at a higher speed. The bird wake is accurately represented. It is analyzed and compared to the widespread frozen-wake assumption, highlighting phenomena that the latter can not capture. The method also allows the computation of the aerodynamic forces experienced by the flier, either through the lifting line method or through control-volume analysis. The computed power requirements at several flight speeds exhibit an order of magnitude and dependency on velocity in agreement with the literature.We demonstrate the application of mixture density networks (MDNs) in the context of automated radiation therapy treatment planning. It is shown that an MDN can produce good predictions of dose distributions as well as reflect uncertain decision making associated with inherently conflicting clinical tradeoffs, in contrast to deterministic methods previously investigated in the literature. A two-component Gaussian MDN is trained on a set of treatment plans for postoperative prostate patients with varying extents to which rectum dose sparing was prioritized over target coverage. Examination on a test set of patients shows that the predicted modes follow their respective ground truths well, both spatially and in terms of their dose-volume histograms. A special dose mimicking method based on the MDN output is used to produce deliverable plans and thereby showcase the usability of voxel-wise predictive densities. Thus, this type of MDN may serve to support clinicians in managing clinical tradeoffs and has the potential to improve the quality of plans produced by an automated treatment planning pipeline.Proton radiotherapy treatment planning systems use a constant relative biological effectiveness (RBE) = 1.1 to convert proton absorbed dose into biologically equivalent high-energy photon dose. This method ignores linear energy transfer (LET) distributions, and RBE is known to change as a function of LET. Variable RBE approaches have been proposed for proton planning optimization. Experimental validation of models underlying these approaches is a pre-requisite for their clinical implementation. This validation has to probe every level in the evolution of radiation-induced biological damage leading to cell death, starting from DNA double-strand breaks (DSB). Using a novel FIESTA-DNA probe, we measured the probability of double-strand break (P DSB) along a 160 MeV proton Bragg curve at two dose levels (30 and 60 Gy (RBE)) and compared it to measurements in a 6 MV photon beam. A machined setup that held an Advanced Markus parallel plate chamber for proton dose verification alongside the probes was fabricated. Each sample set consisted of five 10 μl probes suspended inside plastic microcapillary tubes. These were irradiated with protons to 30 Gy (RBE) at depths of 5-17.5 cm and 60 Gy (RBE) at depths of 10-17.2 cm with 1 mm resolution around Bragg peak. Sample sets were also irradiated using 6MV photons to 20, 40, 60, and 80 Gy. For the 30 Gy (RBE) measurements, increases in P DSB/Gy were observed at 17.0 cm followed by decreases at larger depth. For the 60 Gy (RBE) measurements, no increase in P DSB/Gy was observed, but there was a decrease after 17.0 cm. Dose-response for P DSB between 30 and 60 Gy (RBE) showed less than doubling of P DSB when dose was doubled. Proton RBE effect from DSB, RBEP,DSB, was less then 1 except at the Bragg peak. The experiment showed that the novel probe can be used to perform DNA DSB measurements in a proton beam. To establish relevance to clinical environment, further investigation of the probe's chemical scavenging needs to be performed.
My Website: https://www.selleckchem.com/products/bibo-3304-trifluoroacetate.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team