Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In this work, we reported a novel near-infrared (NIR) fluorescent probe RQNN with large Stokes shift (98 nm) for monitoring pH under extremely acidic conditions. For the preparation of this probe, a 1,4-diethylpiperazine moiety was introduced in rhodamine scaffold to tune the electron-donating character, and an o-phenylenediamine was introduced in spironolactone to provide larger steric hindrance. The deprotonated-protonated equilibrium between RQNN, RQNN-H+ and RQNN-H++ were evaluated in different pH by absorption and emission spectra. As expected, RQNN exhibited lower pka values (pka1 = 4.83, pka2 = 2.99), indicating that the probe can be used in extremely acidic pH. Moreover, RQNN possessed highly selective response to H+ over essential metal ions and biologically related redox molecules, high photo-stability, rapid response time, and excellent reversibility. Importantly, the probe had excellent cell membrane permeability and was further applied successfully to monitor pH fluctuations in live cells.Diseases are critical factors that affect the yield and quality of crops. Therefore, it is of great research value to develop rapid and quantitative methods for identification of common agricultural diseases. This exploratory study involved data analysis of common fungal pathogens using identification modeling based on terahertz spectrum technology. The selected pathogens were Physalospora piricola, Erysiphe cichoracearum, and Botrytis cinerea, which are common fungal pathogens that cause apple ring rot, cucumber powdery mildew, and grape gray mold blight, respectively. Taking polyethylene as the control, the terahertz time-domain spectra, and frequency-domain spectra of samples of the three pathogens were both measured. The absorption and refraction characteristics of these samples in the range of 0.1-2.0 THz were calculated and analyzed, and samples were then divided using the KS algorithm. Terahertz spectrum-image data blocks of the pathogen samples were preprocessed, and the dimensions of data were reduceases.Mercury ions are crucially harmful to ecosystem and human being due to their characters of bioaccumulation and difficulty of biochemical degradation. Therefore, development of mercury ion detection methods has attracted increasing interests recently. In this study, we successfully synthesized a hydroxyphenylbenzothiazole (HBT)-based fluorescent probe HBT-Hg in an extremely simple manner for mercuric ions detection. The spectral studies revealed that the probe HBT-Hg could react with Hg2+ selectively and sensitively in PBS buffer (10 mM, pH = 7.40), showing ratiometric fluorescent changes from blue to light green. The response mechanism of the probe HBT-Hg and Hg2+ was finally confirmed by HPLC analysis, viz., the probe HBT-Hg converted to its precursor compound 1. Finally, the probe HBT-Hg was successfully applied in monitoring Hg2+ in living A549 cells.Silver nanoparticles coated paper (AgNPs-paper) substrates were prepared by inkjet printing Ag ink on four different wettability papers. Scanning electron microscope and contact angle analyzer were used to characterize their surface morphology and wettability. AgNPs-paper substrates were used to detect the surface-enhanced Raman scattering (SERS) spectra of thiram aqueous solution. Relationships between the surface wettability, surface morphology and SERS activities of the substrates were systematically studied. The silver nanoparticles deposited on the hydrophobic papers (photographic paper, graph paper, and weighing paper) were evenly and densely arranged. While in-homogeneous distribution was observed on the hydrophilic printing paper. It can be found that the AgNPs-photographic paper with the maximum contact angle exhibited the highest SERS enhancement. The detection limit for thiram adsorbed on the AgNPs-photographic paper was 10-10 mol/L, which was lower than the others. Good linear responses (R2 = 0.9918, 0.9897) between the SERS intensities and logarithmic concentrations were obtained from 104 to 10-10 mol/L. Moreover, the substrate had good uniformity and reproducibility with relative standard deviation values of 4.20% and 4.90% measured by eight points and ten substrates, respectively. The AgNPs-photographic paper exhibited high stability within eight months.A novel and environmentally-friendly method, which includes determination of trace amounts of quercetin in samples by using UV-vis spectrophotometry after enrichment with amine-based liquid phase microextraction (LPME), has been developed. As extraction solvent, N,N-dimethyl-n-octylamine has been used and the quercetin concentration in extraction phase was determined by UV-vis spectrophotometry at 382.5 nm. Important analytical parameters such as pH, extraction solvent type and volume, sample volume, extraction time were optimized by the method. Quercetin in the sample solution was extracted to 200 μL of N,N-dimethyl-n-octylamine phase at pH 4.0. The detection limit (LOD) and the quantitation limit (LOQ) values for quercetin were calculated as 0.07 μg·mL-1 and 0.24 μg·mL-1, respectively. Cepharanthine ic50 Accuracy studies for the food samples was carried out by addition and recovery experiments. The developed method has been successfully applied to different food samples including spinach, green pepper, red onion and dill weed.The interaction of ferritin iron responsive element (IRE) mRNA with eIF4F was examined by fluorescence and circular dichroism spectroscopy. Fluorescence quenching data indicated that eIF4F contains one high affinity binding site for ferritin IRE RNA. The Scatchard analysis revealed strong binding affinity (Ka = 11.1 × 107 M-1) and binding capacity (n = 1.0) between IRE RNA and eIF4F. The binding affinity of IRE RNA for eIF4F decreased (~4-fold) as temperature increased (from 5 °C to 30 °C). The van't Hoff analysis revealed that IRE RNA binding to eIF4F is enthalpy-driven (ΔH = -47.1 ± 3.4 kJ/mol) and entropy-opposed (ΔS = -30.1 ± 1.5 J/mol/K). The addition of iron increased the enthalpic, while decreasing the entropic contribution towards the eIF4F•IRE RNA complex, resulting in favorable free energy (ΔG = -49.8 ± 2.8 kJ/mol). Thermodynamic values and ionic strength data suggest that the presence of iron increases hydrogen bonding and decreases hydrophobic interactions, leading to formation of a more stable complex.
Homepage: https://www.selleckchem.com/products/cepharanthine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team