Notes
![]() ![]() Notes - notes.io |
Most mineral-associated organic matter (MAOM) is protected against microbial attack, thereby contributing to long-term carbon storage in soils. However, the extent to which reactive compounds released by plants and microbes may destabilize MAOM and so enhance microbial access, as well as the underlying mechanisms, remain unclear. Here, we tested the ability of functionally distinct model exudates-ligands, reductants, and simple sugars-to promote microbial utilization of monomeric MAOM, bound via outer-sphere complexes to common iron and aluminum (hydr)oxide minerals. The strong ligand oxalic acid induced rapid MAOM mineralization, coinciding with greater sorption to and dissolution of minerals, suggestive of direct MAOM mobilization mechanisms. In contrast, the simple sugar glucose caused slower MAOM mineralization, but stimulated microbial activity and metabolite production, indicating an indirect microbially-mediated mechanism. Catechol, acting as reductant, promoted both mechanisms. While MAOM on ferrihydrite showed the greatest vulnerability to both direct and indirect mechanisms, MAOM on other (hydr)oxides was more susceptible to direct mechanisms. These findings suggest that MAOM persistence, and thus long-term carbon storage within a given soil, is not just a function of mineral reactivity but also depends on the capacity of plant roots and associated microbes to produce reactive compounds capable of triggering specific destabilization mechanisms.We report a large kinetic isotope effect (KIE) for intramolecular charge transport in π-conjugated oligophenyleneimine (OPI) molecules connected to Au electrodes. 13C and 15N substitution on the imine bonds produces a conductance KIE of ∼2.7 per labeled atom in long OPI wires >4 nm in length, far larger than typical heavy-atom KIEs for chemical reactions. In contrast, isotopic labeling in shorter OPI wires less then 4 nm does not produce a conductance KIE, consistent with a direct tunneling mechanism. Temperature-dependent measurements reveal that conductance for a long 15N-substituted OPI wire is activated, and we propose that the exceptionally large conductance KIEs imply a thermally assisted, through-barrier polaron tunneling mechanism. In general, observation of large conductance KIEs opens up considerable opportunities for understanding microscopic conduction mechanisms in π-conjugated molecules.Two long-chain polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play vital roles in human health. Similarly, two biosynthetic pathways, based on desaturase/elongase and polyketide synthase, have been implicated in the synthesis of microbial LC-PUFA. Up to now, only several microalgae, no bacteria, have been used in the commercial production of oils rich in DHA and/or EPA. Fully understanding the enzymatic mechanism in the biosynthesis of LC-PUFA would contribute significantly to produce EPA and/or DHA by the bacteria. In this study, we report a 1.998 Å-resolution crystal structure of trans-acting enoyl reductase (ER), SpPfaD, from Shewanella piezotolerans. The SpPfaD model consists of one homodimer in the asymmetric unit, and each subunit contains three domains. These include an N-terminal, a central domain forming a classic TIM barrel with a single FMN cofactor molecule bound atop the barrel, and a C-terminal domain with a lid above the TIM barrel. Furthermore, we docked oxidized nicotinamide adenine dinucleotide phosphate (NADP) and an inhibitor 2-(4-(2-((3-(5-(pyridin-2-ylthio)thiazol-2-yl)ureido)methyl)-1H-imidazole-4-yl)phenoxy)acetic acid (TUI) molecule into the active site and analyzed the inhibition and catalytic mechanisms of the enoyl reductase SpPfaD. To the best of our knowledge, this is the first crystal structure of trans-ER in the biosynthesis of bacterial polyketides.Cyanobacterial blooms that form in response to climate warming and nutrient enrichment in freshwater lakes have become a global environmental challenge. Historical legacy effects and the mechanisms underlying cyanobacterial community succession are not well understood, especially for plateau lakes that are important global freshwater resources. This study investigated the temporal dynamics of cyanobacterial communities over centuries in response to nutrient enrichment and climate warming in low-latitude plateau lakes using high-throughput DNA sequencing of sedimentary DNA combined with traditional paleolimnological analyses. Our results confirmed that nutrients and climate warming drive shifts in cyanobacterial communities over time. Cyanobacterial community turnover was pronounced with regime shifts toward new ecological states, occurring after exceeding a tipping point of aquatic total phosphorus (TP). The inferred species interactions, niche differentiation, and identity of keystone taxa significantly changed after crossing the aquatic TP ecological threshold, as demonstrated by network analysis of cyanobacterial taxa. read more Further, the contribution of aquatic TP to cyanobacterial community dynamics was greater than that of air temperature when lakes were in an oligotrophic state. In contrast, as the aquatic TP threshold was exceeded, the contribution to community dynamics by air temperature increased and potentially surpassed that of aquatic TP. Overall, these results provide new evidence for how past nutrient levels in lacustrine ecosystems influence contemporary cyanobacterial community responses to global warming in low-latitude plateau lakes.High-pressure X-ray and neutron diffraction analyses of an ambient-pressure phase (AP) and two high-pressure phases (HP1 and HP2) of ammonia borane (i.e., NH3BH3 and ND3BD3) were conducted to investigate the relationship between their crystal structures and dihydrogen bonds. It was confirmed that the hydrogen atoms in AP formed dihydrogen bonds between adjacent molecules, and the H-H distance between the hydrogen atoms forming this interaction was shorter than 2.4 Å, which was nearly 2 times larger than the van der Waals radius of hydrogen. In the case of half of the hydrogen bonds, a phase transition from AP to the first high-pressure phase (HP1) at ∼1.2 GPa resulted in an increase in the H-H distances, which suggested that the dihydrogen bonds were broken. However, when HP1 was further pressurized to ∼4 GPa, all of the H-H distances became shorter than 2.4 Å again, which implied the occurrence of pressure-induced re-formation of the dihydrogen bonds. It was speculated that the re-formation was consistent with a second-order phase transition suggested in previous studies by Raman spectroscopy and X-ray diffraction measurement.
Homepage: https://www.selleckchem.com/products/lxs-196.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team