Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The use of nitrogen (N) fertilizer marked the start of modern agriculture that boosted food production to help alleviate food shortages across the globe but at the cost of severe environmental issues and critical stress to the agroecosystem. This paper was aimed at determining the fate and transport of nitrite and ammonia under future climate projections by adapting the recommended land management practices that are supposed to reduce nitrate N in surface water to state government target. To accomplish these objectives, a fully-distributed physical-based hydrologic model, MIKE SHE, and a hydrodynamic river model, MIKE 11, were coupled with MIKE ECO-Lab to simulate the fate and transport of different forms of N in the agro-ecosystem in the Upper Sangamon River Basin (USRB). Twelve (12) combinations of land management and climate projections were simulated to evaluate the N fate and transport in the USRB from 2020 to 2050. Under the current land management, the nitrate concentration in surface water was expected to exceed the EPA limit of 10 ppm up to 2.5% of the days in the simulation period. Regulating the fertilizer application rates to approximately 50% of the current rate will ensure this limit will not be exceeded in the future. Implementing cover cropping alone can potentially decrease nitrate N concentrations by 33% in surface water under dry climate and in the saturated zone under future projections. By combining the cover cropping and regulated application rate management, the nitrate N concentration in the saturated zone was expected to decrease by 67% compared with historic baseline. The modeling framework developed and used in this study can help evaluate the effectiveness of different management schemes aimed at reducing future nutrient load in our surface water and groundwater.Microplastic pollution in organisms is a growing environmental concern worldwide. Current methods to identify microplastics (MPs) are subject to the limitations of analytical techniques, and there is no full-scale method to measure MPs in organisms. In this study, Raman Tweezers and spectroscopy methods were combined and applied to identify MPs in organisms within the size range of 1-5000 μm. The abundance of small MPs (1-20 μm) was measured in crab (0.39-2.83 items/individual) and fish (0.35-3.22 items/individual). Most MPs were transparent in color and pellet shape. The proportion of small MPs (1-20 μm) was 35.77%, and analysis revealed the non-inclusion of this fraction will induce large deviations in the overall measurement. The large MPs (20-5000 μm) were identified in crab and fish with abundances ranging from 0.74-4.96 items/individual and 0.72-5.39 items/individual, respectively. Mainly fiber shape items were detected, the dominant particle size ranged from 20 to 100 μm, and most MPs were white. Polyethylene (PE) and polyethylene terephthalate (PET) were the main types of MPs polymers detected. Our study fills the gap to provide a new method to detect MPs in organisms below 20 μm, facilitating study of the migration and transformation of small MPs in the environment.The mutual response between surface temperature and the mass concentration of regional black carbon (BC) aerosols has still remained far from understanding due to its complex nature. A detailed analysis presented in this study using long-term data indicates a significant pattern of mutual response between surface temperature and BC in restricted background weather conditions (water vapor, cloud cover and wind speeds). The analysis shows that a fall in surface temperature which naturally occurs daily after the sunrise, leads to the development of a stronger inversion in the near-surface level and this, in turn, contributes to the enhancement of BC fumigation peak. Further, the enhanced fumigation peak (especially during pre-monsoon) is found positively influencing the mid-day temperature rise possibly due to the immediate impact of the direct radiative forcing of BC aerosols. These observations lead us to consider a hypothesis that 'an extra fall in the morning hour surface temperature contributes to the enhancement of BC fumigation peak and can degrade the morning hour air quality which gives positive feedback to the mid-day temperature rise over a region'. A substantial in situ data [over Gadanki (13.5°N, 79.2°E)] along with MERRA-2 and ERA-5 data are used in this methodical analysis. Moreover, the validity of the hypothesis has been tested over other locations. Regional weather and seasonal cycle are found to have apparent interference with the feature of the observed mutual response pattern. The results from this study clearly indicate that the approach used, can be executed location independently.Soil moisture controls environmental processes and species distributions, but it is difficult to measure and interpolate across space. Topographic Wetness Index (TWI) derived from digital elevation model is therefore often used as a proxy for soil moisture. However, different algorithms can be used to calculate TWI and this potentially affects TWI relationship with soil moisture and species assemblages. To disentangle insufficiently-known effects of different algorithms on TWI relation with soil moisture and plant species composition, we measured the root-zone soil moisture throughout a growing season and recorded vascular plants and bryophytes in 45 temperate forest plots. For each plot, we calculated 26 TWI variants from a LiDAR-based digital terrain model and related these TWI variants to the measured soil moisture and moisture-controlled species assemblages of vascular plants and bryophytes. A flow accumulation algorithm determined the ability of the TWI to predict soil moisture, while the flow width and slope algorithms had only a small effects. The TWI calculated with the most often used single-flow D8 algorithm explained less than half of the variation in soil moisture and species composition explained by the TWI calculated with the multiple-flow FD8 algorithm. Flow dispersion used in the FD8 algorithm strongly affected the TWI performance, and a flow dispersion close to 1.0 resulted in the TWI best related to the soil moisture and species assemblages. Smad inhibitor Using downslope gradient instead of the local slope gradient can strongly decrease TWI performance. Our results clearly showed that the method used to calculate TWI affects study conclusion. However, TWI calculation is often not specified and thus impossible to reproduce and compare among studies. We therefore provide guidelines for TWI calculation and recommend the FD8 flow algorithm with a flow dispersion close to 1.0, flow width equal to the raster cell size and local slope gradient for TWI calculation.
My Website: https://www.selleckchem.com/products/ldn193189.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team