Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
These findings suggest that the carbon offset research has been evolved from the theoretical exploration at the early stage to a more diversified conversion of research outputs at the practical level in recent years. Interdisciplinary research towards individual and organizational carbon offset behaviors in a broader context of socio-economic development and cooperation among various agents is the emphasis and direction for future study.The regional climate has significantly warmed with erratically declining annual rainfall and intensified downpour within a narrower span of monsoon months, which led to an increased trophic state (≈algae) in most inland waters. Freshwater clupeids vitally control the aquatic food chain by grazing on algae. Despite increasing food availability, IUCN Red List® revealed 16 freshwater clupeids with a decreasing population trend. We investigated one such species' reproductive dependencies, Gudusia chapra (Indian river shad), in the lower Gangetic drainage (India) under a mixed context of climate change and overfishing. Monthly rainfall (≥ 60-100 mm) and water temperature (≥ 31-32 °C) are key breeding cues for females. PS-1145 IKK inhibitor The regional climate seems inclined to fulfill these through the significant part of the breeding season, and indeed the species has maintained consistent breeding phenology over 20 years. Other breeding thresholds relevant to fishing include size at first maturity (≥ 6.8 cm; reduced by ~ 25-36%) and pre-spawning girth (Girthspawn50 ≥ 7 cm; first record). Girthspawn50 is a proxy of the minimum mesh size requirement of fishing nets to allow safe passage of "gravid" females (+ 22% bulged abdomen) and breed. The operational fishing nets (3-10 cm mesh) probably have been indulged in indiscriminative fishing of gravid females for generations. Under a favorably changing climate and food availability, existing evidence suggests a fishery-induced evolution in regional females (to circumvent such mesh sizes) through earlier maturation/puberty at smaller sizes. It could be an early warning sign of population collapse (smaller females → lessening fecundity → fewer offspring). Overfishing seemed to be a bigger threat than climate change.Arsenic (As) bioremediation has been an economical and sustainable approach, being practiced widely under several As-contaminated environments. Bioremediation of As involves the use of bacteria, fungi, yeast, plants, and genetically modified organisms for detoxification/removal of As from the contaminated site. The understanding of multi-factorial biological components involved in these approaches is complex and more and more efforts are on their way to make As bioremediation economical and efficient. In this regard, we systematically reviewed the recent literature (n=200) from the last two decades regarding As bioremediation potential of conventional and recent technologies including genetically modified plants for phytoremediation and integrated approaches. Also, the responsible mechanisms behind different approaches have been identified. From the literature, it was found that As bioremediation through biosorption, bioaccumulation, phytoextraction, and volatilization involving As-resistant microbes has proved a very successful technology. However, there are various pathways of As tolerance of which the mechanisms have not been fully understood. Recently, phytosuction separation technology has been introduced and needs further exploration. Also, integrated approaches like phytobial, constructed wetlands using As-resistant bacteria with plant growth-promoting activities have not been extensively studied. It is speculated that the integrated bioremediation approaches with practical applicability and reliability would prove most promising for As remediation. Further technological advancements would help explore the identified research gaps in different approaches and lead us toward sustainability and perfection in As bioremediation.Worldwide, black shales and shale waste are known to be a potential source of metals to the environment. This project demonstrates ongoing weathering and evaluates leaching processes at a 100-m-high shale waste deposit closed in the 1960s. Some deep parts of the deposit are still burning with temperatures exceeding 500 °C. To demonstrate ongoing weathering and leaching, analyses of groundwater and solid samples of shale and shale waste have been undertaken. Largest impact on groundwater quality was observed downstream the deposit, where elevated temperatures also indicate a direct impact from the burning waste deposit. Groundwater quality is largely controlled by pH and redox conditions (e.g., for arsenic, nickel, molybdenum, uranium and vanadium), and the mixture of different waste materials, including pyrite (acidic leachates) and carbonates (neutralizing and buffering pH). Analyses of shale waste from the deposit confirm the expected pyrite weathering with high concentrations of iron, nickel and uranium in the leachates. No general time trends could be distinguished for the groundwater quality from the monitoring in 2004-2019. This study has shown that black shale waste deposits can have a complex long-term impact on the surrounding environment.Mercury is a very toxic metal that persists and accumulates in the living organisms present in the aquatic systems and its elimination is an urgent need. Two green (Ulva intestinalis and Ulva lactuca), brown (Fucus spiralis and Fucus vesiculosus), and red (Gracilaria sp. and Osmundea pinnatifida) marine macroalgae were tested for mercury removal from saline waters. The ability of each species was evaluated to the initial mercury concentrations of 50, 200, and 500 μg dm-3 along 72 h. In general, all species exhibited good performances, removing 80.9-99.9% from solutions with 50 μg dm-3, 79.3-98.6% from solutions with 200 μg dm-3, and 69.8-97.7% from solutions containing 500 μg dm-3 of mercury. Among the macroalgae, Ulva intestinalis showed the highest affinity to mercury and it presented an uptake ability up to 1888 μg g-1 of Hg(II) and bioconcentration factors up to 3823, which proved its promising potential on Hg removal.
Homepage: https://www.selleckchem.com/products/ps-1145.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team