Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Er3+-doped NaLa(WO4)2 is a promising phosphor material for applications in many fields including the ratiometric thermometry based on thermal effect of fluorescence intensity ratio (FIR) of green fluorescence of Er3+, which is directly correlated with Judd-Ofelt parameters Ωi (i = 2, 4, 6). Present paper reports synthesis and Judd-Ofelt spectroscopic properties of Er3+-doped NaLa(WO4)2 µm-sized phosphor. The phosphor was synthesized by solid-state chemical reaction and characterized by X-ray diffraction and Raman scattering techniques. The results show that the phosphor is dominated by NaLa(WO4)2 crystalline phase and has a maximum phonon energy 927 cm-1. Judd-Ofelt analysis was done for the phosphor using a safe, reliable method based on diffuse reflection spectrum and Er3+ 1.5 μm fluorescence lifetime. First, diffuse reflection spectrum of the phosphor was measured and relative absorption spectrum was calibrated from it using Kubelka-Munk theory. Second, Er3+ 1.5 μm fluorescence lifetime of the phosphor was measured and absorption cross-section spectrum was obtained based on the assumption that the 1.5 μm emission has 100% quantum efficiency. Finally, based on the absorption cross-section spectrum, standard Judd-Ofelt analysis was carried out to extract the Ωi. Radiative rate, fluorescent branch ratio and radiative lifetime of some transitions have been obtained from the known Ωi values. In addition, FIR proportional factor was evaluated in terms of Ωi and compared with those values of other materials. The result shows that the phosphor has a better prospect for the application in ratiometric thermometry.Many questions concerning the biophysical and physiological properties of skin are still open. Skin aging, permeability, dermal absorption, hydration, and drug transdermal delivery, are few examples of processes with unveiled underlying mechanisms. In this work, it is presented a comparison between Fourier transform infrared absorption (FTIR) of dry stratum corneum and stratum corneum under lipase action supported by first-principles density functional vibrational calculations. The molecular structure of stratum corneum was modeled by an archetype of its hygroscopic proteic portion inside the corneocytes, the natural moisturizing factor, coupled to glycerol molecules which represent the lipid fraction of stratum corneum. Vibrational spectra were calculated and compared to experimental data obtained on the animal model of stratum corneum. The experimental results indicated prominent spectral differences between dry and lipase-treated stratum corneum. Principal components analysis and hyerarchical clustering indicated that 1200, 1650, and 1695 cm-1 bands are the most influential on the discrimination. It is noticed that bands in the fingerprint region (800-1800 cm-1) were correctly assigned. Moreover, the calculations revealed the existence of two coupled vibration between the hydroxyl group of lipid and methylene (1120 and 1160 cm-1), which are of special interest since they probe the lipid-amino acid coupling. The model was also able to predict the shear modulus of dry stratum corneum in excellent agreement with the reported values from the literature. Other physical/chemical properties could be calculated exploring the chemical accuracy and molecular resolution of this model. Research in dermatology, cosmetology, and biomedical engineering in the specific topics of drug delivery and/or mechanical properties of skin are examples of fields that would potentially take advantage of this approach.Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.Co-crystallization is an effective strategy to improve the drug properties such as solubility and stability. However, its thermodynamic backgrounds, especially lattice vibration, haven't been fully understood. In this work, indomethacin (IND) cocrystals formed with nicotinamide (NIC) and saccharin (SAC) are successfully characterized by using terahertz spectroscopy. DFT calculations at PBE-D3 level with and without constrained unit cell are performed to predict the absorption peaks at spectral range. The results suggest that the DFT calculations with constrained unit cell achieve a better agreement with experimental observations. Based on the optimized geometries and calculated phonons, the thermodynamic contributions from lattice vibrations to cocrystal formations are further evaluated. The findings reveal that the vibrational energy plays a comparable role with electronic energy, but has an opposite impact on these two cocrystal formations.Au-Ag bimetallic nanostructures with blunt and sharp sprouts are synthesized using a high yield one-step synthesis process. For the first time, these nanostructures are obtained at different growth times in the same synthesis process. Sodium Monensin nmr The synthesized nanostructures are characterized using a field emission-scanning electron microscope, transmission electron microscope, energy dispersive X-ray analyzer, and UV-Visible spectrometer. The plasmon-active substrates are fabricated using synthesized nanostructures with ease. The Raman probe (IR-780 Iodide) molecules are dispersed on the surface of plasmon-active substrates by drop-casting 10 μl of dye solution of concentration ranging from 1 μM to 1 picomolar (pM) on the substrates. The surface enhanced Raman scattering (SERS) spectra are recorded for each concentration. The nanostructures with blunt sprouts are found useful only up to 100 pM. However, this limitation is brought down to 1 pM using nanostructures with sharp sprouts. The normal Raman scattering spectra of molecules and microcrystals are also recorded and compared with the SERS spectra of molecules.
Read More: https://www.selleckchem.com/products/Monensin-sodium-salt(Coban).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team