Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The larger the p and n, the more observable of our proposal. Typically, when p = 2 and n = 284 according to the suggestion given by Peikert et al., the size of public parameters in our proposal is reduced to merely 12% of Zhang et al.'s method. In addition, to lighten the pressure of key generation center, we extend our lattice-based IB-DRE scheme to hierarchical scenario. Finally, both the IB-DRE scheme and the HIB-DRE scheme are proved to be indistinguishable against adaptively chosen identity and plaintext attacks (IND-ID-CPA).This paper considers an adaptive fault-tolerant control problem for a class of uncertain strict feedback nonlinear systems, in which the actuator has an unknown drift fault and the loss of effectiveness fault. Based on the event-triggered theory, the adaptive backstepping technique, and Lyapunov theory, a novel fault-tolerant control strategy is presented. It is shown that an appropriate comprise between the control performance and the sensor data real-time transmission consumption is made, and the fault-tolerant tracking control problem of the strict feedback nonlinear system with uncertain and unknown control direction is solved. The adaptive backstepping method is introduced to compensate the actuator faults. Moreover, a new adjustable event-triggered rule is designed to determine the sampling state instants. The overall control strategy guarantees that the output signal tracks the reference signal, and all the signals of the closed-loop systems are convergent. Finally, the fan speed control system is constructed to demonstrate the validity of the proposed strategy and the application of the general systems.Due to their growing number and increasing autonomy, drones and drone swarms are equipped with sophisticated algorithms that help them achieve mission objectives. Such algorithms vary in their quality such that their comparison requires a metric that would allow for their correct assessment. The novelty of this paper lies in analysing, defining and applying the construct of cross-entropy, known from thermodynamics and information theory, to swarms. It can be used as a synthetic measure of the robustness of algorithms that can control swarms in the case of obstacles and unforeseen problems. Based on this, robustness may be an important aspect of the overall quality. This paper presents the necessary formalisation and applies it to a few examples, based on generalised unexpected behaviour and the results of collision avoidance algorithms used to react to obstacles.Amazon.com Inc. seeks alternative ways to improve manual transactions system of granting employees resources access in the field of data science. The work constructs a modified Artificial Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI) model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data mining to represent entries of Amazon Employees Resources Access (AERA) via information theory. The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features of CSA such as hypermutation and cloning process. This resulting the formation of the proposed model, as an alternative machine learning model to identify factors that should be prioritized in the approval of employees resources applications. Subsequently, reverse analysis method (SATRA) is integrated into our proposed model to extract the relationship of AERA entries based on logical representation. The study will be presented by implementing simulated, benchmark and AERA data sets with multiple performance evaluation metrics. Based on the findings, the proposed model outperformed the other existing methods in AERA data extraction.Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator. The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions during CPR using convolutional neural networks (CNN). compound library inhibitor A total of 3319 ECG segments of 9 s extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable. Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize the performance. The proposed architecture was compared to the most accurate algorithms that include handcrafted ECG features and a random forest classifier (baseline model). The median (90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method were 95.8% (94.6-96.8), 96.1% (95.8-96.5), 96.1% (95.7-96.4) and 96.0% (95.5-96.5), respectively. The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac rhythm without interrupting chest compression therapy.The concept of duality of probability distributions constitutes a fundamental "brick" in the solid framework of nonextensive statistical mechanics-the generalization of Boltzmann-Gibbs statistical mechanics under the consideration of the q-entropy. The probability duality is solving old-standing issues of the theory, e.g., it ascertains the additivity for the internal energy given the additivity in the energy of microstates. However, it is a rather complex part of the theory, and certainly, it cannot be trivially explained along the Gibb's path of entropy maximization. Recently, it was shown that an alternative picture exists, considering a dual entropy, instead of a dual probability. In particular, the framework of nonextensive statistical mechanics can be equivalently developed using q- and 1/q- entropies. The canonical probability distribution coincides again with the known q-exponential distribution, but without the necessity of the duality of ordinary-escort probabilities. Furthermore, it is shown that the dual entropies, q-entropy and 1/q-entropy, as well as, the 1-entropy, are involved in an identity, useful in theoretical development and applications.
Read More: https://www.selleckchem.com/products/4-Methylumbelliferone(4-MU).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team