Notes
Notes - notes.io |
Pattern separation and completion are fundamental hippocampal computations supporting memory encoding and retrieval. However, despite extensive exploration of these processes, it remains unclear whether and how top-down processes adaptively modulate the dynamics between these computations. Here we examine the role of expectation in shifting the hippocampus to perform pattern separation. In a behavioural task, 29 participants (7 males) learned a cue-object category contingency. Then, at encoding, one-third of the cues preceding the to-be-memorised objects, violated the studied rule. At test, participants performed a recognition task with old objects (targets) and a set of parametrically manipulated (very similar to dissimilar) foils for each object. Accuracy was found to be better for foils of high similarity to targets that were contextually unexpected at encoding, compared to expected ones. Critically, there were no expectation-driven differences for targets and low similarity foils. To further explore thesebehavioural study, we found that memory accuracy is enhanced selectively for unexpected highly similar foils, suggesting expectation violation does not enhance memory indiscriminately, but specifically aids the disambiguation of overlapping inputs. This is further supported by our subsequent investigation using a hippocampal computational model, revealing increased representational dissimilarity for unexpected highly similar foils in DG and CA3. These convergent results provide the first evidence that pattern separation plays an explicit role in supporting memory for unexpected information. Copyright © 2020 Frank et al.Tightly regulated activity of the transcription factor MYC is essential for orderly cell proliferation. Upon deregulation, MYC elicits and promotes cancer progression. Proteasomal degradation is an essential element of MYC regulation, initiated by phosphorylation at Serine62 (Ser62) of the MB1 region. Panobinostat manufacturer Here we found that Ser62 phosphorylation peaks in mitosis, but that a fraction of non-phosphorylated MYC binds to the microtubules of the mitotic spindle. Consequently, the microtubule-destabilizing drug vincristine decreases wildtype MYC stability, while phosphorylation-deficient MYC is more stable, contributing to vincristine resistance and induction of polyploidy. PI3K inhibition attenuates post-mitotic MYC formation and augments the cytotoxic effect of vincristine. Implications The spindles function as a docking site for MYC during mitosis may constitute a window of specific vulnerability to be exploited for cancer treatment. Copyright ©2020, American Association for Cancer Research.Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1 -/- ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.Above 2 GPa the phase diagram of water simplifies considerably and exhibits only two solid phases up to 60 GPa, ice VII and ice VIII. The two phases are related to each other by hydrogen ordering, with the oxygen sublattice being essentially the same. Here we present neutron diffraction data to 15 GPa which reveal that the rate of hydrogen ordering at the ice VII-VIII transition decreases strongly with pressure to reach timescales of minutes at 10 GPa. Surprisingly, the ordering process becomes more rapid again upon further compression. We show that such an unusual change in transition rate can be explained by a slowing down of the rotational dynamics of water molecules with a simultaneous increase of translational motion of hydrogen under pressure, as previously suspected. The observed cross-over in the hydrogen dynamics in ice is likely the origin of various hitherto unexplained anomalies of ice VII in the 10-15 GPa range reported by Raman spectroscopy, X-ray diffraction, and proton conductivity.
Read More: https://www.selleckchem.com/products/LBH-589.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team