Notes
![]() ![]() Notes - notes.io |
[This corrects the article DOI 10.1371/journal.pone.0228072.].Traditional pathogen surveillance methods for white-nose syndrome (WNS), the most serious threat to hibernating North American bats, focus on fungal presence where large congregations of hibernating bats occur. However, in the western USA, WNS-susceptible bat species rarely assemble in large numbers and known winter roosts are uncommon features. WNS increases arousal frequency and activity of infected bats during hibernation. Our objective was to explore the effectiveness of acoustic monitoring as a surveillance tool for WNS. We propose a non-invasive approach to model pre-WNS baseline activity rates for comparison with future acoustic data after WNS is suspected to occur. We investigated relationships among bat activity, ambient temperatures, and season prior to presence of WNS across forested sites of Montana, USA where WNS was not known to occur. We used acoustic monitors to collect bat activity and ambient temperature data year-round on 41 sites, 2011-2019. We detected a diverse bat community across managed (n = 4) and unmanaged (n = 37) forest sites and recorded over 5.37 million passes from bats, including 13 identified species. Bats were active year-round, but positive associations between average of the nightly temperatures by month and bat activity were strongest in spring and fall. From these data, we developed site-specific prediction models for bat activity to account for seasonal and annual temperature variation prior to known occurrence of WNS. https://www.selleckchem.com/products/brensocatib.html These prediction models can be used to monitor changes in bat activity that may signal potential presence of WNS, such as greater than expected activity in winter, or less than expected activity during summer. We propose this model-based method for future monitoring efforts that could be used to trigger targeted sampling of individual bats or hibernacula for WNS, in areas where traditional disease surveillance approaches are logistically difficult to implement or because of human-wildlife transmission concerns from COVID-19.The identification of bots is an important and complicated task. The bot classifier "Botometer" was successfully introduced as a way to estimate the number of bots in a given list of accounts and, as a consequence, has been frequently used in academic publications. Given its relevance for academic research and our understanding of the presence of automated accounts in any given Twitter discourse, we are interested in Botometer's diagnostic ability over time. To do so, we collected the Botometer scores for five datasets (three verified as bots, two verified as human; n = 4,134) in two languages (English/German) over three months. We show that the Botometer scores are imprecise when it comes to estimating bots; especially in a different language. We further show in an analysis of Botometer scores over time that Botometer's thresholds, even when used very conservatively, are prone to variance, which, in turn, will lead to false negatives (i.e., bots being classified as humans) and false positives (i.e., humans being classified as bots). This has immediate consequences for academic research as most studies in social science using the tool will unknowingly count a high number of human users as bots and vice versa. We conclude our study with a discussion about how computational social scientists should evaluate machine learning systems that are developed for identifying bots.The novel coronavirus 2019 (COVID-19) global pandemic has drastically affected the world economy, raised public anxiety, and placed a substantial psychological burden on the governments and healthcare professionals by affecting over 4.7 million people worldwide. As a preventive measure to minimise the risk of community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in India, a nationwide lockdown was imposed initially for 21 days to limit the movement of 1.3 billion people. These restrictions continue in most areas, with a conditional relaxation occurring in a few Indian states. In an attempt to assess the emerging mutants of SARS-CoV-2 and determine their spread in India, we analysed 112 complete genomes of SARS-CoV-2 in a time-lapse manner. We found 72 distinct SARS-CoV-2 haplotypes, defined by 143 polymorphic sites and high haplotype diversity, suggesting that this virus possesses a high evolutionary potential. We also demonstrated that early introduction of SARS-CoV-2 into India was from China, Italy and Iran and observed signs of community spread of the virus following its rapid demographic expansion since its first outbreak in the country. Additionally, we identified 18 mutations in the SARS-CoV-2 spike glycoprotein and a few selected mutations showed to increase stability, binding affinity, and molecular flexibility in the overall tertiary structure of the protein that may facilitate interaction between the receptor binding domain (RBD) of spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. The study provides a pragmatic view of haplotype-dependent spread of SARS-CoV-2 in India which could be important in tailoring the pharmacologic treatments to be more effective for those infected with the most common haplotypes. The findings based on the time-lapse sentinel surveillance of SARS-CoV-2 will aid in the development of a real-time practical framework to tackle the ongoing, fast-evolving epidemic challenges in the country.
The present study aimed to determine whether the polymorphisms at rs2241766 and rs1501299 on the ADIPOQ gene were related to the susceptibility of type 2 diabetes mellitus (T2DM).
Eight databases, PubMed, GWAS, Embase, Lochrane, Ebsco, CNKI (Chinese National Knowledge Infrastructure), VIP (Viper Database) and ChinaInfo were searched, and a meta-analysis of susceptibility was conducted between SNP45, SNP276 polymorphisms and T2DM. Furthermore, HWE test was conducted to assess the genetic balance of the study, evaluate the quality of Newcastle-Ottawa quality assessment scale (NOS), and establishing allelic, dominant, recessive, heterozygous, and homozygous gene models.
This meta-analysis included 53 articles, encompassing 9285 cases with rs2241766 and 14156 controls and 7747 cases with rs1501299 and 10607 controls. For the rs2241766 locus, a significant correlation was found in the three models by the subgroup analysis. Western Asians dominant gene model (TT + TG vs. GG, P = 0.01); heterozygous gene model (TG vs.
Read More: https://www.selleckchem.com/products/brensocatib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team