Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.Temperature is a crucial environmental factor that influences physiological functions in fishes, and increased temperature during development can shape an organism's phenotype. An active line of inquiry in comparative developmental physiology is whether short-term exposure to thermal changes have lasting phenotypic effects. This is the first study to apply a developmental 3-dimensional critical window experimental design for a vertebrate, using time, temperature, and phenotypic response (i.e., variables measured). Rainbow trout (Oncorhynchus mykiss) are an anadromous species for which resident populations occupy freshwater environments that are likely impacted by variable and rising temperatures, particularly during embryonic development. To assess thermal effects on fish development, we examined trout hatchling phenotypes following rearing in constant temperatures (5, 10, 15 and 17.5 °C) and following exposure to increased temperature above 5 °C during specific developmental windows. Time to 50% hatch, hatchling mass and body length showed general trends of decreasing with increasing constant temperature, and survival was highest in constant 10 °C incubation. Thermally shifting embryos into 17.5 °C during gastrulation and organogenesis reduced survival at hatch compared to 10 °C, and exposure to 15 and 17.5 °C only late in development produced lighter and shorter hatchlings. Oxygen consumption rate (V̇o2) at organogenesis differed between embryos incubated constantly in increased temperature or exposed only during organogenesis, but generally we found limited temperature effects on V̇o2 that may be due to high data variability. Collectively, these results suggest that survival of rainbow trout hatchlings is most sensitive to 17.5 °C exposure during gastrulation and organogenesis, while warm water exposure later in development has greater impacts on morphology. CP-690550 Thus, trait-specific critical windows of thermal sensitivity exist for rainbow trout embryos that alter the hatching phenotype.Epidemiologic evidence promote the inclusion of flavones in diet due to their inhibitory effects on certain types of cancers, particularly in women. Among the naturally occurring plant flavonoids, Apigenin 7-O-glucoside (AGL) is endowed with anti-inflammatory, anti-oxidant, and anti-cancer activities. However, its mechanism of action on cervical cancer, the fourth largest cancer in women, has not yet been clarified. In the current study, we have determined the effect of AGL on human cervical cancer cells and studied its molecular mechanism against cervical cancer. The results showed that AGL inhibited the proliferation of HeLa cells (IC50 was 47.26 μM at 48 h) by inducing apoptosis. Furthermore, AGL treatment caused G0/G1 phase arrest, reduced mitochondrial membrane potential (MMP), and upgraded intracellular ROS production. AGL could promote the release of cytochrome c by regulating Bcl-2 family proteins, and then activated caspase 9/3 to promote cell apoptosis. Moreover, AGL treatment promoted the expression of p16 INK4A, while inhibited the expression of Cyclin A/D/E and CDK2/6. At the same time in HeLa cells treated with AGL, the PTEN/PI3K/AKT pathway was inhibited in a concentration-dependent manner, and cell migration was also impeded correspondingly through the matrix metalloproteinase 2 and 9. Our study may provide a new research direction for harnessing the novel natural compounds in cervical cancer treatment.Early stages of atherosclerosis are characterizated for the uptake of oxidate low-density lipoprotein (oxLDL) by inflammatory macrophages in the arteries, promoting the foam cell formation. Drimys winteri is a native tree of Chile that produce drimane sesquiterpenoids, here it was evaluated the inhibitory foam cell formation by the total extract of barks of Drimys winteri and isodrimeninol, a sesquiterpenoid isolated from the tree. The results showed that Dw and isodrimeninol inhibited the foam cell formation on macrophage M1, by Oil Red O staining. Moreover, Dw reduced the gene expression of pro-inflammatory cytokine TNF-α, in contrast to isodrimeninol that showed not effect on the gene expression of this cytokine, also Dw enhanced the expression of the anti-inflammatory cytokine IL-10, in more significant manner than isodrimeninol at 20 μg/mL. While, Dw and isodrimeninol significantly reduced the expression of IL1-β at concentrations of 20 μg/mL, but not affecting the MMP-9 levels, assessed by RT-qPCR. In conclusion, Drimys winteri and isodrimeninol induce anti-atherosclerotic effects, inhibiting foam cell formation, as well as promoting anti-inflammatory responses. This study confirm the relevance of this tree as a medicinal source for the Mapuche people, and suggesting that Drimys winteri could be used in early stages of atherosclerosis.
Read More: https://www.selleckchem.com/products/CP-690550.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team