Notes
Notes - notes.io |
This methodology proves to be successful at classifying beluga signals, and the framework can be easily generalized to other acoustic classification problems.This study compares the classification of Azerbaijani fricatives based on two sets of features (a) spectral moments, spectral peak, amplitude, duration, and (b) cepstral coefficients employing Hidden Markov Models to divide each fricative into three regions such that the variances of the measures within each region are minimized. The cepstral coefficients were found to be more reliable predictors in the classification of all nine Azerbaijani fricatives and the cepstral measures yielded highly successful classification rates (91.21% across both genders) in the identification of the full set of fricatives of Azerbaijani.This study characterized medial olivocochlear (MOC) reflex activity on synchronized spontaneous otoacoustic emissions (SSOAEs) as compared to transient-evoked otoacoustic emissions (TEOAEs) in normal-hearing adults. Using two time windows, changes in TEOAE and SSOAE magnitude and phase due to a MOC reflex elicitor were quantified from 1 to 4 kHz. In lower frequency bands, changes in TEOAE and SSOAE magnitude were significantly correlated and were significantly larger for SSOAEs. Changes in TEOAE and SSOAE phase were not significantly different, nor were they significantly correlated. The larger effects on SSOAE magnitude may improve the sensitivity for detecting the MOC reflex.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is "warping," a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f 1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.Previous work has shown mixed findings concerning the role of voice quality cues in Mandarin tones, with some studies showing that creak improves identification. This study tests the linguistic importance of acoustic properties of creak for Mandarin tone perception. Mandarin speakers identified tones with four resynthesized creak manipulations low spectral tilt, irregular F0, period doubling, and extra-low F0. Two experiments with three conditions were conducted. In Experiment 1, the manipulations were confined to a portion of the stimuli's duration; in Experiment 2 the creak manipulations were modified and lengthened throughout the stimuli, and in a second condition, noise was incorporated to weaken F0 cues. Listeners remained most sensitive to extra-low F0, which affected identification of the four tones differently it improved the identification accuracy of Tone 3 and hindered that of Tones 1 and 4. Irregular F0 consistently hindered T1 identification. The effects of irregular F0, period doubling, and low spectral tilt emerged in Experiment 2, where F0 cues were less robust and creak cues were stronger. Thus, low F0 is the most prominent cue used in Mandarin tone identification, but other voice quality cues become more salient to listeners when the F0 cues are less retrievable.This study examined how well individual speech recognition thresholds in complex listening scenarios could be predicted by a current binaural speech intelligibility model. Model predictions were compared with experimental data measured for seven normal-hearing and 23 hearing-impaired listeners who differed widely in their degree of hearing loss, age, as well as performance in clinical speech tests. The experimental conditions included two masker types (multi-talker or two-talker maskers), and two spatial conditions (maskers co-located with the frontal target or symmetrically separated from the target). The results showed that interindividual variability could not be well predicted by a model including only individual audiograms. Predictions improved when an additional individual "proficiency factor" was derived from one of the experimental conditions or a standard speech test. Nutlin-3a clinical trial Overall, the current model can predict individual performance relatively well (except in conditions high in informational masking), but the inclusion of age-related factors may lead to even further improvements.Intracochlear electrocochleography (ECochG) is a potential tool for the assessment of residual hearing in cochlear implant users during implantation and acoustical tuning postoperatively. It is, however, unclear how these ECochG recordings from different locations in the cochlea depend on the stimulus parameters, cochlear morphology, implant design, or hair cell degeneration. In this paper, a model is presented that simulates intracochlear ECochG recordings by combining two existing models, namely a peripheral one that simulates hair cell activation and a three-dimensional (3D) volume-conduction model of the current spread in the cochlea. The outcomes were compared to actual ECochG recordings from subjects with a cochlear implant (CI). The 3D volume conduction simulations showed that the intracochlear ECochG is a local measure of activation. Simulations showed that increasing stimulus frequency resulted in a basal shift of the peak cochlear microphonic (CM) amplitude. Increasing the stimulus level resulted in wider tuning curves as recorded along the array.
Website: https://www.selleckchem.com/products/nutlin-3a.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team