Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Trivalent bismuth is a unique heavy p-block ion. It is highly insoluble in water, due to strong hydrolysis tendencies, and known for low toxicity. Its lone pair is structure-directing, providing framework materials with structural flexibility, leading to piezoelectric and multiferroic function. The flexibility it provides is also advantageous for dopants and vacancies, giving rise to conductivity, luminescence, color, and catalytic properties. We are exploiting Bi3+ in a completely different way, as a knob to "tune" the solubility and stability of transition-metal oxo clusters. The lone pair allows capping and isolation of metastable cluster forms for solid-state and solution characterization. With controlled release of the bismuth (via bismuth oxyhalide metathesis), the metal oxo clusters can be retained in aqueous solution, and we can track their reaction pathways and conversion to related metal oxyhydroxides. Here we present isolation of a bismuth-stabilized MnIV cluster, fully formulated [MnIV6Bi2KO9(CH3Cy via SAXS. We observe one-dimensional growth of species, followed by the precipitation of nanocrystalline hollandite (identified by TEM). The hollandite is presumably templated by the K+, originally in the crystalline lattice of Mn6Bi2. In this Forum Article that combines new results and prospective, we compare these results to prior studies in which we first introduced the use of capping Bi3+ to stabilize reactive clusters, followed by destabilization to understand reaction pathways in synthesis and low-temperature geochemistry.ERK1 and ERK5 are proposed to have pivotal roles in several types of cancer. Under some circumstance, ERK5 may provide a common bypass route, which rescues proliferation upon abrogation of ERK1 signaling. Thus, we accurately classified the tumor types from The Cancer Genome Atlas (TCGA) based on the expression levels of ERK1 and ERK5. We proposed a novel therapeutic strategy to overcome the above-mentioned compensatory mechanism in specific tumor types by co-targeting both ERK1 and ERK5. On the basis of the idea of overcoming ERK5 compensation mechanism, 22ac (ADTL-EI1712) as the first selective dual-target inhibitor of ERK1 and ERK5 was discovered to have potent antitumor effects in vitro and in vivo. Interestingly, this compound was found to induce regulated cell death accompanied by autophagy in MKN-74 cells. Taken together, our results warrant the potential of this dual-target inhibitor as a new candidate drug that conquers compensatory mechanism in certain tumor types.The mechanism by which water molecules modulate biomolecular interactions and the time scale of microscopic solvation processes are usually not known. This is particularly problematic as it prevents the incorporation of effects of water molecules into the design of drug molecules with optimal binding kinetics and selectivity. We investigated this crucial problem of drug discovery using trypsin and thrombin in complex with benzamidine and N-amidinopiperidine. For these systems, we studied the mechanism and time scale of solvation using molecular dynamics and umbrella sampling calculations. In thrombin, water molecules are seemingly stable in the apo binding pocket and have an exchange rate on the nanosecond time scale. On the contrary, water molecules in apo trypsin exchange approximately one order of magnitude faster than in thrombin. This difference in the exchange rate is due to internal water channels that are only found in thrombin linking the interior of the binding pocket with bulk solvent. PF-00562271 These cause the exchange rate of water molecules to be independent of the ligand molecule. However, in the case of trypsin, the solvent exchange rate greatly varies between the two complexes, indicating a strong dependence on the ligand molecule. Furthermore, the binding mechanism of the ligand molecules critically depends on water molecules that intercalate between key amino acids and the ligand, leading to enhanced water residence times in intermediate dissociation steps. Our findings strongly indicate a selectivity discriminating role of water molecules for these two proteins and underline the functional interplay between water channels and binding affinity of ligand molecules.A rapid charge/discharge secondary battery is critical in portable electronic devices and electric vehicles. Germanium, due to the metallic property and facile alloying reaction with lithium, displays great potential in fast charge/discharge batteries in contrast to other intercalation batteries. In order to accommodate the over 300% volume change, a 2D hybrid composite electrode consisting of a homogeneous, amorphous GeOx(x=1.57) layer bonded on Ti3C2 MXenes was successfully developed via an industry available method. The expanded interlayer space inside the MXene matrix accommodates the restricted isotropic expansion from the stress-released, ultrathin GeOx layer. Owing to the improved e-/Li+ conductivity from both metallic reduced Ge and MXene, the battery showed an excellent charge/discharge performance as fast as 3 min (20.0 C). A high-capacity retention of ∼1048.1 mAh/g along with a Coulombic efficiency (CE) of 99.8% at 0.5 C after 500 cycles was achieved. Under 1.0 C, the capacity was still up to 929.6ns."Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM-EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes.
Read More: https://www.selleckchem.com/products/pf-562271.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team