Notes
![]() ![]() Notes - notes.io |
Inside the MRI scanner, we collected high-resolution T1-weighted anatomical images from each subject. SBM analyses were performed with the computational anatomy toolbox (CAT12) and indices for cortical thickness, for cortical surface complexity, for gyrification, and sulcal depth were calculated. Further analyses revealed associations between (1) the cortical surface complexity of the right superior temporal gyrus and numerical intelligence; (2) the depth of the right central sulcus and adults' ability to solve complex arithmetic problems; and (3) the depth of the left parieto-occipital sulcus and adults' higher-order mathematics competence. Interestingly, no relationships with previously reported brain regions were observed, thus, suggesting the importance of similar research to confirm the role of the brain regions found in this study. Copyright © 2020 Heidekum, Vogel and Grabner.Measures of the brain's automatic electrophysiological responses to sounds represent a potential tool for identifying age- and depression-related neural markers. However, these markers have rarely been studied related to aging and depression within one study. Here, we investigated auditory event-related potentials (ERPs) in the brain that may show different alterations related to aging and depression. We used an oddball condition employing changes in sound intensity to investigate (i) sound intensity dependence; (ii) sensory gating; and (iii) change detection, all within a single paradigm. The ERPs of younger (18-40 years) and older (62-80 years) depressed female participants and age-matched non-depressed participants were measured. Intensity dependence was examined as the difference between N1 responses to repeated high- and low-intensity sounds, sensory gating as N1 responses to rare and repeated sounds, and change detection as indexed by the mismatch negativity (MMN). We found that intensity dependence was greater in older participants than younger ones, indicating effects related to aging but not to depression. Selleckchem IPI-145 For sensory gating, we found depression- and age-related alterations as increased N1 responses. No group differences were found for MMN. Although a sensory gating deficit was expected in older adults, this study is the first to demonstrate age-related overexcitability in sound intensity dependency. The results indicate that automatic brain responses to sound intensity changes are suitable for studying age- and depression-related neural markers but may not be sensitive enough to differentiate the effects of aging and depression. Copyright © 2020 Ruohonen, Kattainen, Li, Taskila, Ye and Astikainen.The Seventh Annual Deep Brain Stimulation (DBS) Think Tank held on September 8th of 2019 addressed the most current (1) use and utility of complex neurophysiological signals for development of adaptive neurostimulation to improve clinical outcomes; (2) Advancements in recent neuromodulation techniques to treat neuropsychiatric disorders; (3) New developments in optogenetics and DBS; (4) The use of augmented Virtual reality (VR) and neuromodulation; (5) commercially available technologies; and (6) ethical issues arising in and from research and use of DBS. These advances serve as both "markers of progress" and challenges and opportunities for ongoing address, engagement, and deliberation as we move to improve the functional capabilities and translational value of DBS. It is in this light that these proceedings are presented to inform the field and initiate ongoing discourse. As consistent with the intent, and spirit of this, and prior DBS Think Tanks, the overarching goal is to continue to develop multidisciplinary collaborations to rapidly advance the field and ultimately improve patient outcomes. Copyright © 2020 Ramirez-Zamora, Giordano, Gunduz, Alcantara, Cagle, Cernera, Difuntorum, Eisinger, Gomez, Long, Parks, Wong, Chiu, Patel, Grill, Walker, Little, Gilron, Tinkhauser, Thevathasan, Sinclair, Lozano, Foltynie, Fasano, Sheth, Scangos, Sanger, Miller, Brumback, Rajasethupathy, McIntyre, Schlachter, Suthana, Kubu, Sankary, Herrera-Ferrá, Goetz, Cheeran, Steinke, Hess, Almeida, Deeb, Foote and Okun.The renewal effect of extinction demonstrates the context-dependency of extinction learning. It is defined as the recovery of an extinguished response occurring when the contexts of extinction and recall differ. Behavioral studies showed that modulating context relevance can strengthen context-specific responses. In our fMRI study, we investigated to what extent a modulation of context salience can alter renewal levels and provide additional information about the neural basis for renewal. In a within-subjects design, participants completed two sessions of an associative learning task in randomized order. In the salient condition (SAL), a context was presented alone at the start of each trial, before being presented together with the stimulus. The regular condition (REG) contained no context-alone phase. In about one-third of participants (SWITCH), the context salience modulation significantly increased renewal rates in the SAL compared to the REG condition. The other participants showed either renewal (REN) or no renewal (NoREN) in both conditions. The modulation did not significantly affect learning performance during the initial forming of associations or extinction learning. In the SWITCH group, activation in left opercular inferior frontal gyrus (iFG) during the recall phase was associated with a renewal effect, together with activity in the bilateral posterior hippocampus and ventromedial prefrontal cortex (vmPFC). Also during the extinction phase, left opercular iFG activation was higher in groups exhibiting renewal in recall, irrespective of the context salience modulation. Besides confirming the participation of vmPFC in extinction recall, our findings provide novel insights regarding an as yet undetected, potentially important role for renewal-supporting processes in left iFG during extinction learning and recall, which are presumably based on the region's proposed function of evaluating competing response options under conditions of ambiguity. Copyright © 2020 Lissek, Klass and Tegenthoff.
Here's my website: https://www.selleckchem.com/products/ipi-145-ink1197.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team