Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A two-dimensional model MIKE21 coupled with a modified EcoLab module was applied to model the water quality of surface flow wetlands. In the model, vegetation effects, oxygen production, nutrient consumption by microorganisms and vegetation were set in the solutions of hydrodynamic, chemical, and biological processes. Based on the field investigation and measurements in the Guishui River wetland, the model was established for the downstream reaches of the Guishui River and the Sanli River. The model calculated the hydrodynamics and water quality changes by vegetation type and distribution. The model parameters were calibrated and results were validated using the measurements. The concentrations of ammonia nitrogen, phosphate, and total nitrogen at outflow decreased by 14.29%, 33.33%, and 20.00% in the presence of wetland vegetation compared to no wetland vegetation. During water circulation, the flow rate increased by 0.4 m3 ·s-1 at the inlet of Guishui and Sanli rivers, increasing the water level and velocity in some parts of the rivers. The water areas with vegetation in Sanli and Guishui rivers increased by 144.44% and 13.16%, respectively. The concentrations of ammonia nitrogen, phosphate, and total nitrogen at outflow decreased by 35.71%, 50.00%, and 46.67% compared to no wetlands and no circulation. The circulation strengthened the wetland purification function. #link# Danusertib price was organically integrated into the model for water quality calculation, which provides the technical support for the water quality response research under comprehensive measures such as river and lake wetland ecological restoration and water conservancy regulation.The cyanobacterial species C. raciborskii are ubiquitous in tropical regions, and its successful invasion into temperate zones has been partially attributed to its ability of survival in low P availability and the existence of multiple ecotypes. To explore the physiological response of different strains to phosphorus fluctuations, four strains of C. raciborskii isolated from the Zhenhai Reservoir were used to investigate their growth and alkaline phosphatase (ALP) activity at different inorganic phosphorus (Pi) concentrations (HP=7.13 mg ·L-1, MP=0.64 mg ·L-1, LP=0.03 mg ·L-1) and different phosphorus forms [dipotassium hydrogen phosphate (K2HPO4), sodium pyrophosphate (K4P2 O7), sodium polyphosphate (K5P3O10), D-glucose-6-phosphate (D-G-6-P), adenosine triphosphate (ATP), cyclic adenosine monophosphate (cAMP)]. Four C. raciborskii strains showed a similar growth response to phosphate changes their biomass increased with an increase in Pi concentrations, while the ALP activity showed the opposite trend. The Aeservoir. Compared with the other strains, strain N8 represented better adaptability to phosphorus fluctuations and DIP deficiency. Variations within C. raciborskii strains may make this species more adaptable to environmental changes and enhance its competitive advantage.Thirteen typical antibiotics in surface water of the Lianhua Reservoir were analyzed using HPLC/MS/MS to assess the pollution characteristics and risk levels. Ten antibiotics except for erythromycin, sulfadiazine, and sulfamethoxazole were detected in surface water and the total concentration of antibiotics varied between non-detectable (n.d.) and 925.26 ng ·L-1. Azithromycin had the highest concentration (n.d.-232.61 ng ·L-1) with the detection frequency of 75%, followed by enrofloxacin (n.d.-187.69 ng ·L-1), tetracycline (n.d.-155.05 ng ·L-1), and ciprofloxacin (n.d.-83.66 ng ·L-1) with the detection frequencies over 60%. The spatial distribution of antibiotics was as follows total concentration of upstream (sampling point 1) > Aoxi River stream tributary (sampling point 2) > reservoir downstream (sampling point 3) > reservoir entrance (sampling point 4) > reservoir area (sampling point 5). The seasonal variations in the concentrations of antibiotics were evident; total concentrations in the dry season were significantly higher than those in the wet and normal seasons. The results of the environmental risk assessment indicated that ofloxacin, enrofloxacin, and ciprofloxacin pose significant risks to the environment. In the Lianhua Reservoir, ciprofloxacin showed high potential risk to the ecological environment, while the environmental risks of other antibiotics in the reservoir were below the medium level. The combined risk value of the antibiotics in the dry season was higher than that in the wet and normal seasons.Microplastics (MPs) and antibiotic resistance genes (ARGs) are both considered emerging contaminants of increasing concern because their combined pollution poses a serious risk to the ecological environment and human health. In this study, high-throughput quantitative PCR techniques were used to investigate the diversity and abundance of ARGs in river water, to which two different microplastics (PVC and PVA) were added for aerated incubation. The results showed that ARGs in river water were diverse, and microplastics could induce more types of ARGs. Although the number and abundance of ARGs decreased in all three treatments, which were cultivated for 14 d by aeration, compared to those in non-treated samples, the total abundance of ARGs in treatments aerated with MPs were higher than those aerated without MPs, especially in the samples treated with water-soluble microplastics (PVA). Significant correlations between the abundance of ARGs and mobile genetic elements (MGEs) were observed, implying that the occurrence of MGEs may potentially affect the transmission and distribution of ARGs through horizontal gene transfer (HGT) in river water.Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a group of manmade chemicals and are ubiquitously detected in aquatic environments. China is a major producer and consumer of PFASs. In this study, we investigated the occurrence and characteristics of PFASs in the surface sediments from three fluorine industrial parks in North China, the Xihe River in Liaoning Province (Fuxin Section), the Xiaoqing River in Shandong Province (Zibo Section), and the Yangtze River in Jiangsu Province (Changshu Section), using the UPLC/MS-MS method. The total concentration of PFASs (∑PFASs) in surface sediments of the Xihe River ranged from 15.8 to 2770 ng ·g-1, and PFTeDA and HFPO-DA were the dominant pollutants. In the surface sediments of the Xiaoqing River, ∑PFASs ranged from 12.2 to 7853 ng ·g-1, and PFOA and HFPO-DA were the dominant pollutants. In the surface sediments of the Yangtze river, ∑PFASs ranged from 9.20 to 35.9 ng ·g-1, and PFTeDA and 6:2 FTS were the main pollutants. Sewage discharge from the industrial parks (point source pollution) was the main source of PFASs in three regions in this study.
Homepage: https://www.selleckchem.com/products/PHA-739358(Danusertib).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team