Notes
![]() ![]() Notes - notes.io |
In the context of our germ-free mouse experiment, wild douc microbiota could serve as a reservoir for microbes for cross-species transplants. Our results suggest that wild douc microbiota are tailored to diverse fiber diets and can prevent weight gain when exposed to a native diet.
In the context of our germ-free mouse experiment, wild douc microbiota could serve as a reservoir for microbes for cross-species transplants. Our results suggest that wild douc microbiota are tailored to diverse fiber diets and can prevent weight gain when exposed to a native diet.
The skin microbiome of marine fish is thought to come from bacteria in the surrounding water during the larval stages, although it is not clear how different water conditions affect the microbial communities in the water and, in turn, the composition and development of the larval skin microbiome. In aquaculture, water conditions are especially important; claywater and greenwater are often used in larval rearing tanks to increase water turbidity. Here, we explored the effects of these water additives on microbial communities in rearing water and on the skin of first-feeding sablefish larvae using 16S rRNA gene sequencing. We evaluated three treatments greenwater, claywater, and greenwater with a switch to claywater after 1 week.
We observed additive-specific effects on rearing water microbial communities that coincided with the addition of larvae and rotifer feed to the tanks, such as an increase in Vibrionaceae in greenwater tanks. Additionally, microbial communities from experimental tank water, especialounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.
Our results suggest that larval sablefish skin microbiomes are most sensitive to the surrounding seawater up to 1 week following the yolk-sac stage and that claywater substituted for greenwater after 1 week post-first feed does not significantly impact skin-associated microbial communities. However, the larval skin microbiome changes over time under all experimental conditions. Furthermore, our findings suggest a potential two-way interaction between microbial communities on the host and the surrounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.
With a growing demand for safe and sustainable alternatives to antimicrobials, functional feed ingredients such as plant essential oils have been evaluated for their potential to improve gut health. Amongst these, oregano essential oil (OEO) with the main active compounds carvacrol and thymol has been reported to have antimicrobial and antioxidative properties resulting in improved intestinal barrier function and growth in pigs and poultry. However, its impact on the gut microbiota still remains unclear. The aim of this study was to examine the effect of an oregano essential oil phytobiotic on sow and piglet performance and faecal microbiota.
Piglets from OEO supplemented sows were significantly heavier at one week of age and showed a trend for improved average daily weight gain from birth to weaning. Post-weaning, maternally supplemented piglets were numerically heavier at 10 weeks post-weaning and at slaughter with a reduced variability in bodyweight. Health records showed that piglets in the OEO suppleoduction. Reducing antimicrobial usage can help to reduce the risk of antimicrobial resistance (AMR) which is a global focus for animal production.
We hypothesise that the effects observed from this study were exerted through modulation of the gut microbial communities in the sow and her offspring through maternal microbial transfer. Understanding the link between the gut microbiota and dietary factors represents a keystone to improving health and performance for sustainable pig production. Reducing antimicrobial usage can help to reduce the risk of antimicrobial resistance (AMR) which is a global focus for animal production.Understanding the structure of the respiratory microbiome and its complex interactions with opportunistic pathogenic bacteria has become a topic of great scientific and economic interest in livestock production, given the severe consequences of respiratory disease on animal health and welfare. The present review focuses on the microbial structures of the porcine upper and lower airways, and the factors that influence microbiome development and onset of respiratory disease. Following a literature search on PubMed and Scopus, 21 articles were selected based on defined exclusion criteria (20 studies performed by 16S rRNA gene sequencing and one by shotgun metagenomics). Analysis of the selected literature indicated that the microbial structure of the upper respiratory tract undergoes a remarkable evolution after birth and tends to stabilise around weaning. LY2603618 Antimicrobial treatment, gaseous ammonia concentration, diet and floor type are amongst the recognized environmental factors influencing microbiome structure. The predominant phyla of the upper respiratory tract are Proteobacteria and Firmicutes with significant differences at the genus level between the nasal and the oropharyngeal cavity. Only five studies investigated the lower respiratory tract and their results diverged in relation to the relative abundance of these two phyla and even more in the composition of the lung microbiome at the genus level, likely because of methodological differences. Reduced diversity and imbalanced microbial composition are associated with an increased risk of respiratory disease. However, most studies presented methodological pitfalls concerning specimen collection, sequencing target and depth, and lack of quality control. Standardization of sampling and sequencing procedures would contribute to a better understanding of the structure of the microbiota inhabiting the lower respiratory tract and its relationship with pig health and disease.
Host-specific microbiomes play an important role in individual health and ecology; in marine mammals, epidermal microbiomes may be a protective barrier between the host and its aqueous environment. Understanding these epidermal-associated microbial communities, and their ecological- or health-driven variability, is the first step toward developing health indices for rapid assessment of individual or population health. In Cook Inlet, Alaska, an endangered population of beluga whales (Delphinapterus leucas) numbers fewer than 300 animals and continues to decline, despite more than a decade of conservation effort. Characterizing the epidermal microbiome of this species could provide insight into the ecology and health of this endangered population and allow the development of minimally invasive health indicators based on tissue samples.
We sequenced the hypervariable IV region of bacterial and archaeal SSU rRNA genes from epidermal tissue samples collected from endangered Cook Inlet beluga whales (n = 33) and the nearest neighboring population in Bristol Bay (n = 39) between 2012 and 2018.
Website: https://www.selleckchem.com/products/LY2603618-IC-83.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team