Notes
![]() ![]() Notes - notes.io |
Concrete production is globally a major water consumer, and in general, drinking-quality water is mixed in the binder. In the present study, simulated sea water and reverse osmosis reject water were used as batching water for one-part (dry-mix) alkali-activated blast furnace slag mortar. Alkali-activated materials are low-CO2 alternative binders gaining world-wide acceptance in construction. However, their production requires approximately similar amount of water as regular Portland cement concrete. read more The results of the present study revealed that the use of saline water did not hinder strength development, increased setting time, and did not affect workability. The salts incorporated in the binder decreased the total porosity of mortar, but they did not form separate phases detectable with X-ray diffraction or scanning electron microscopy. Leaching tests for monolithic materials revealed only minimal leaching. Furthermore, results for crushed mortars (by a standard two-stage leaching test) were within the limits of non-hazardous waste. Thus, the results indicated that high-salinity waters can be used safely in one-part alkali-activated slag to prepare high-strength mortars. Moreover, alkali-activation technology could be used as a novel stabilization/solidification method for reverse osmosis reject waters, which frequently pose disposal problems.
To report and evaluate strabismus surgery in children with Angelman syndrome, in order to optimize and standardize surgical approach. Other purposes are to understand the possible relation between ocular findings and motor ability, and between improvement in ocular alignment and changes in motor skills in this population.
Observational cross-sectional study.
Medical records of pediatric patients with Angelman syndrome, who underwent strabismus surgery, were investigated. Collected data included genotype, gender, age at the time of surgery, refractive error, pre-operative strabismus, surgical procedure, surgical outcome, gross and fine motor development assessment pre- and post-operatively.
Seventeen subjects, aged 3-15 years, were investigated. Fourteen patients were exotropic, three esotropic. Most patients presented astigmatism. Considering the exaggerated response to standard amounts of surgery and the risk of consecutive strabismus on long term follow-up reported by previous studies in children wie standard nomograms for strabismus surgery may be successfully applied in subjects with Angelman syndrome and exotropia. Our data suggest that the reduction of the deviation angle improves motor skills in strabismic pediatric patients with Angelman syndrome.Cytohesin Arf-GEFs promote actin polymerization and protrusions of cultured cells, whereas the Drosophila cytohesin, Steppke, antagonizes actomyosin networks in several developmental contexts. To reconcile these findings, we analyzed epidermal leading edge actin networks during Drosophila embryo dorsal closure. Here, Steppke is required for F-actin of the actomyosin cable and for actin-based protrusions. steppke mutant defects in the leading edge actin networks are associated with improper sealing of the dorsal midline, but are distinguishable from effects of myosin mis-regulation. Steppke localizes to leading edge cell-cell junctions with accumulations of the F-actin regulator Enabled emanating from either side. Enabled requires Steppke for full leading edge recruitment, and genetic interaction shows the proteins cooperate for dorsal closure. Inversely, Steppke over-expression induces ectopic, actin-rich, lamellar cell protrusions, an effect dependent on the Arf-GEF activity and PH domain of Steppke, but independent of Steppke recruitment to myosin-rich AJs via its coiled-coil domain. Thus, Steppke promotes actin polymerization and cell protrusions, effects that occur in conjunction with Steppke's previously reported regulation of myosin contractility during dorsal closure.Small cell lung cancer (SCLC) is a carcinoma of the lungs with strong invasion, poor prognosis and resistant to multiple chemotherapeutic drugs. It has posed severe challenges for the effective treatment of lung cancer. Therefore, searching for genes related to the development and prognosis of SCLC and uncovering their underlying molecular mechanisms are urgent problems to be resolved. This study is aimed at exploring the potential pathogenic and prognostic crucial genes and key pathways of SCLC via bioinformatic analysis of public datasets. Firstly, 117 SCLC samples and 51 normal lung samples were collected and analyzed from three gene expression datasets. Then, 102 up-regulated and 106 down-regulated differentially expressed genes (DEGs) were observed. And then, functional annotation and pathway enrichment analyzes of DEGs was performed utilizing the FunRich. The protein-protein interaction (PPI) network of the DEGs was constructed through the STRING website, visualized by Cytoscape. Finally, the expression levels of eight hub genes were confirmed in Oncomine database and human samples from SCLC patients. It showed that CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1, and BUB1B were upregulated in SCLC tissues compared to paired adjacent non-cancerous tissues. These suggested that eight hub genes might be viewed as new biomarkers for prognosis of SCLC or to guide individualized medication for the therapy of SCLC.Differential expressions of estrogen/progesterone receptors (ER/PR) and individual component of extracellular matrices derived from fibroid are reported. Information on the pattern of change in ER/PR expression and amount of tissue fibrosis after hormonal treatment is unclear. We investigated pattern of change in ER/PR expression and percentage of tissue fibrosis in different uterine leiomyomas after gonadotropin-releasing hormone agonist (GnRHa) treatment. Biopsy specimens from fibroids and adjacent myometria were collected after surgery from women with submucosal myoma (SMM, n = 18), intramural myoma (IMM, n = 16) and subserosal myoma (SSM, n = 17). A proportion of women in each group of fibroid underwent treatment with GnRHa for a variable period of 3-6 months. Tissue expression of ER and PR was analyzed by immunohistochemistry. In vitro cell proliferation effect of GnRHa on human umbilical vein endothelial cells (HUVECs) was examined. Distribution of tissue fibrosis was examined by Masson's trichrome staining with computer-captured image analysis of fibrosis derived from different types of fibroid.
Homepage: https://www.selleckchem.com/products/BMS-790052.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team