Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
fect of previous feed presentations on subsequent feed sorting and rumen pH, but in the long term disappeared.Sufficient maternal supply of essential fatty acids (EFA) to neonatal calves is critical for calf development. In the modern dairy cow, EFA supply has shifted from α-linolenic acid (ALA) to linoleic acid (LA) due to the replacement of pasture feeding by corn silage-based diets. As a consequence of reduced pasture feeding, conjugated linoleic acid (CLA) provision by rumen biohydrogenation was also reduced. The present study investigated the fatty acid (FA) status and performance of neonatal calves descended from dams receiving corn silage-based diets and random supplementation of either 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n-6/n-3 FA ratio = 13; n = 9), 38 g/d Lutalin (BASF SE, Ludwigshafen, Germany) providing 27% cis-9,trans-11 and trans-10,cis-12 CLA, respectively (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) in the last 9 wk before parturition and following lactation. The experimental period comprised the first 5 d of life, during which calves increased in PL if dams received EFA. The percentage of cis-9,trans-11 CLA was higher in the plasma fat of EFA+CLA than CTRL calves after birth. By d 5, the percentages of both CLA isomers increased, leading to higher proportions in plasma fat of CLA and EFA+CLA than in CTRL and EFA calves. Elevated cis-9,trans-11 CLA enrichment was observed on d 5 in PL, CE, and triglycerides of CLA-treated calves, whereas trans-10,cis-12 CLA could not be detected in individual plasma fractions. These results suggest that an altered maternal EFA and CLA supply can reach the calf via the placenta and particularly via the intake of colostrum and transition milk, whereas the n-3 and n-6 FA metabolites partly indicated a greater transfer via the placenta. Furthermore, the nutrient supply via colostrum and transition milk might be partly modulated by an altered maternal EFA and CLA supply but without consequences on calf performance during the first 5 d of life.Bacillus cereus is an important food-borne pathogenic bacteria and a putrid microorganism in the dairy industry. Raw and pasteurized buffalo milk play important roles in the dairy market in southwestern China. However, the reports on the prevalence and characterization of B. cereus strains isolated from the above sources are lacking. In this study, 150 raw buffalo milk samples and 300 pasteurized buffalo milk samples were collected from 3 provinces in southwestern China. The genotype, virulence gene distribution, antibiotic resistance, and biofilm-forming ability of isolates were analyzed. Ninety-six B. cereus strains were isolated and identified 50 isolates (33.3%) from buffalo raw milk and 46 isolates (15.3%) from pasteurized buffalo milk. These strains were classified into 41 sequence types (ST) and 5 groups, of which ST857 was the predominant ST. The detection rates of virulence genes nheABC cluster, hblACD cluster, cytK, bceT, entFM, hlyII, and cesB were 89.6%, 13.5%, 64.6%, 71.9%, 84.4%, 62.5%, and 6.25%, respectively. The antimicrobial susceptibility testing showed that more than 90% of the isolates were susceptible to gentamicin, chloramphenicol, ciprofloxacin, erythromycin, vancomycin, and tetracycline, as well as resistant to ampicillin, cefepime, oxacillin, and rifampin. The results of biomass biofilm evaluation of the isolates on the stainless-steel tube showed that the optical density values at a wavelength of 595 nm of all strains in group I were greater than 1, with the strongest overall biofilm-forming ability among 5 groups, and the overall biofilm-forming ability of group III was the weakest. There was a relationship between the biofilm-forming ability and phylogenetic relationship of B. cereus strains. RMC-4550 Taken together, our findings are the first to report the contamination situation and characterization of B. cereus isolated from raw and pasteurized buffalo milk in southwestern China as well as indicate the potential risk posed by this pathogen to dairy industry and public health.The growth of psychrotolerant aerobic spore-forming bacteria during refrigerated storage often results in the spoilage of fluid milk, leading to off-flavors and curdling. Because of their low toxicity, biodegradability, selectivity, and antimicrobial activity over a range of conditions, glycolipids are a novel and promising intervention to control undesirable microbes. The objective of this study was to determine the efficacy of a commercial glycolipid product to inhibit spore germination, spore outgrowth, and the growth of vegetative cells of Paenibacillus odorifer, Bacillus weihenstephanensis, and Viridibacillus arenosi, which are the predominant spore-forming spoilage bacteria in milk. For spore germination and outgrowth assays, varying concentrations (25-400 mg/L) of the glycolipid product were added to commercial UHT whole and skim milk inoculated with ∼4 log10 spores/mL of each bacteria and incubated at 30°C for 5 d. Inhibition of spore germination in inoculated UHT whole milk was only observed for V. acessary to identify effective concentrations for the inhibition of Viridibacillus spp. growth in whole milk beyond 7 d. Findings from this study demonstrate that natural glycolipids have the potential to inhibit the growth of dairy-spoilage bacteria and extend the shelf life of milk.Dietary supplementation of alfalfa hay or calf starter during the preweaning period was beneficial to the gastrointestinal development in dairy calves and lambs. In the present study, we designed 2 experiments using weaning with calf starter and alfalfa hay to investigate the diet-ruminal microbiome-host crosstalk in yak calves by analyzing the ruminal microbiota and rumen epithelial transcriptome. During the preweaning period, supplementation with either alfalfa hay or the starter significantly promoted animal growth and organ development in yak calves, including increases in body weight, body height, body length, chest girth, and development of liver, spleen, and thymus. These improvements could be attributed to increased dry matter intake, rumen fermentation, and development. Butyrate concentration increased in yak calves fed alfalfa hay or the starter, which could further promote ruminal epithelium development. Using 16S rRNA gene amplicon sequencing, we determined that butyrate-producing genera were increased by the supplementation with alfalfa hay or the starter.
Homepage: https://www.selleckchem.com/products/rmc-4550.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team