Notes
![]() ![]() Notes - notes.io |
In this paper, konjac oligoglucomannan (KOGM) was obtained with a hydrolysis rate of 56.24% by controlling the hydrolysis conditions. KOGM was passed through a 0.2 kDa dialysis bag, a 3 kDa ultrafiltration tube, and a 5 kDa ultrafiltration tube, creating samples with molecular weights of 0.2-3 kDa (IV), 3-5 kDa (III), and >5 kDa (II), respectively. The in vitro antioxidant activities of the KOGM samples were tested by measuring their removal effects on ˙OH, O 2 - , and DPPH˙. The in vivo antioxidant activities of the samples were analyzed by measuring their impacts on the malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and glutathione peroxidase (GSH-PX) activity in mice. The results show that the KOGM samples in groups III and IV could effectively remove ˙OH, O 2 - , and DPPH˙; the KOGM samples in all three groups could enhance the SOD and GSH-PX activities and reduce the MDA content in the liver tissues of mice; finally, the antioxidant activity of KOGM is negatively correlated with the molecular weight.Cellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.Melanoma is an aggressive malignant tumor. The crucial role of circular RNAs has been documented in many types of cancer, including melanoma. The objective of this study was to uncover the function of circ_0084043 in the biological process of melanoma and associated mechanism of action. The expression of circ_0084043, miR-31, and Krüppel-like factor 3 (KLF3) was determined by qRT-PCR. Cell proliferation and apoptosis were monitored by the MTT assay and flow cytometry assay, respectively. The progression of glycolysis was evaluated according to the levels of glucose consumption, lactate production, and ATP concentration using appropriate detection kits. The relationship between miR-31 and circ_0084043 or KLF3 was predicted by the bioinformatics tool and ascertained by the dual-luciferase reporter assay. The protein levels of KLF3 and glucose transporter 1 (Glut1) were quantified by western blot. A xenograft model was established to ascertain the role of circ_0084043 in vivo. As a result, circ_0084043 expression was reinforced in melanoma tissues and cells. Circ_0084043 knockdown inhibited cell proliferation, induced cell apoptosis, and restrained glycolysis. MiR-31 was a target of circ_0084043, and miR-31 deficiency reversed the role of circ_0084043 knockdown. KLF3 was targeted by miR-31, and KLF3 upregulation abolished the effects of miR-31 enrichment. Moreover, circ_0084043 knockdown impeded tumor growth in vivo and suppressed the level of Glut1 by modulating miR-31 and KLF3. Circ_0084043 promoted cell proliferation and glycolysis, and blocked apoptosis through the circ_0084043-miR-31-KLF3 regulatory axis in melanoma.There is increasing evidence of the linkage between type 2 diabetes mellitus (T2DM) and gut microbiota. Based on our previous studies, we investigated the hypoglycemic mechanisms of yam gruel to provide a scientific basis for its popularization and application. Wistar rats were randomly divided into control and T2DM model groups. Rats in the model group were stimulated by a high-sugar/high-fat diet combined with an intraperitoneal injection of streptozotocin to induce T2DM. The T2DM rats were further subdivided randomly into three groups (1) DM, (2) DM + yam gruel, and (3) DM + metformin. After 4 weeks of intervention, the changes in gut microbiota, short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), the expression of G protein-coupled receptor 43 (GPR43), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and fasted blood glucose (FBG) levels were observed. Yam gruel intervention elevated the abundance of probiotic bacteria and increased the expression of SCFAs, GPR43 receptor, GLP-1, and PYY. It also reduced FBG levels. We conclude that yam gruel can lower FBG by promoting the growth of probiotic bacteria, increasing the content of SCFAs, and enhancing the expression of GPR43 receptor to increase the content of GLP-1 and PYY in serum.Studies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Tebipenem Pivoxil Four genes are not expressed in the tissues of C.
Website: https://www.selleckchem.com/products/Tebipenem-pivoxil(L-084).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team