Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Conversely, spatial attention influences BOLD activity exclusively near the pial surface. Our findings show that simultaneous interrogation of columnar and laminar dimensions of the cortical fold can dissociate thalamocortical inputs from top-down processing, and allow the investigation of their interactions without any stimulus manipulation.The cognitive control network (CCN) that comprises regions of the frontoparietal network, the cingulo-opercular network, and other sub-cortical regions as core structures is commonly activated by events with an increase in information uncertainty. However, it is not clear whether this CCN activation is associated with both information entropy that represents the information conveyed by the context formed by a sequence of events and the surprise that quantifies the information conveyed by a specific type of event in the context. We manipulated entropy and surprise in this functional magnetic resonance imaging study by varying the probability of occurrence of two types of events in both the visual and auditory modalities and measured brain response as a function of entropy and surprise. We found that activation in regions of the CCN increased as a function of entropy and surprise in both the visual and auditory tasks. The frontoparietal network and additional structures in the CCN mediated the relationship between these information measures and behavioral response. These results suggest that the CCN is a high-level modality-general neural entity for the control of the processing of information conveyed by both context and event.There is growing research interest in the neural mechanisms underlying the recognition of material categories and properties. This research field, however, is relatively more recent and limited compared to investigations of the neural mechanisms underlying object and scene category recognition. Motion is particularly important for the perception of non-rigid materials, but the neural basis of non-rigid material motion remains unexplored. Using fMRI, we investigated which brain regions respond preferentially to material motion versus other types of motion. We introduce a new database of stimuli - dynamic dot materials - that are animations of moving dots that induce vivid percepts of various materials in motion, e.g. flapping cloth, liquid waves, wobbling jelly. Control stimuli were scrambled versions of these same animations and rigid three-dimensional rotating dots. Results showed that isolating material motion properties with dynamic dots (in contrast with other kinds of motion) activates a network of cortical regions in both ventral and dorsal visual pathways, including areas normally associated with the processing of surface properties and shape, and extending to somatosensory and premotor cortices. We suggest that such a widespread preference for material motion is due to strong associations between stimulus properties. For example viewing dots moving in a specific pattern not only elicits percepts of material motion; one perceives a flexible, non-rigid shape, identifies the object as a cloth flapping in the wind, infers the object's weight under gravity, and anticipates how it would feel to reach out and touch the material. These results are a first important step in mapping out the cortical architecture and dynamics in material-related motion processing.The deployment of neural alpha (8-12 Hz) lateralization in service of spatial attention is well-established Alpha power increases in the cortical hemisphere ipsilateral to the attended hemifield, and decreases in the contralateral hemisphere, respectively. Much less is known about humans' ability to deploy such alpha lateralization in time, and to thus exploit alpha power as a spatio-temporal filter. Here we show that spatially lateralized alpha power does signify - beyond the direction of spatial attention - the distribution of attention in time and thereby qualifies as a spatio-temporal attentional filter. Participants (N = 20) selectively listened to spoken numbers presented on one side (left vs right), while competing numbers were presented on the other side. Key to our hypothesis, temporal foreknowledge was manipulated via a visual cue, which was either instructive and indicated the to-be-probed number position (70% valid) or neutral. Temporal foreknowledge did guide participants' attention, as they recognized numbers from the to-be-attended side more accurately following valid cues. selleck chemical In the magnetoencephalogram (MEG), spatial attention to the left versus right side induced lateralization of alpha power in all temporal cueing conditions. Modulation of alpha lateralization at the 0.8 Hz presentation rate of spoken numbers was stronger following instructive compared to neutral temporal cues. Critically, we found stronger modulation of lateralized alpha power specifically at the onsets of temporally cued numbers. These results suggest that the precisely timed hemispheric lateralization of alpha power qualifies as a spatio-temporal attentional filter mechanism susceptible to top-down behavioural goals.Information processing in the brain is mediated by structural white matter pathways and is highly dependent on topological brain properties. Here we combined transcranial magnetic stimulation (TMS) with high-density electroencephalography (EEG) and Diffusion Weighted Imaging (DWI), specifically looking at macroscale connectivity to understand whether regional, network-level or whole-brain structural properties are more responsible for stimulus propagation. Neuronavigated TMS pulses were delivered over two individually defined nodes of the default mode (DMN) and dorsal attention (DAN) networks in a group of healthy subjects, with test-retest reliability assessed 1-month apart. TMS-evoked activity was predicted by the modularity and structural integrity of the stimulated network rather than the targeted region(s) or the whole-brain connectivity, suggesting network-level structural connectivity as more relevant than local and global brain properties in shaping TMS signal propagation. The importance of network structural connectome was unveiled only by evoked activity, but not resting-state data. Future clinicals interventions might enhance target engagement by adopting DWI-guided, network-focused TMS.
Homepage: https://www.selleckchem.com/products/lee011.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team