Notes
![]() ![]() Notes - notes.io |
The latter in combination with online porosity measurements using SIFT-MS provides fundamental information regarding the biofiltration process.Superfine powdered activated carbon (S-PAC) is an adsorbent material with the promise of properties that allow for rapid adsorption of small molecule contaminants. To explore the potential for rapid adsorption among varying activated carbon types, seven commercially available activated carbons were obtained and pulverized to produce S-PAC particles less than 1 μm in diameter. The carbons were chosen to include several types of common carbons produced from coal precursors as well as a wood-based carbon and a coconut shell-based carbon. In this study, the S-PACs and their parent PACs were tested for the adsorption of three aromatic compounds-2-phenylphenol, biphenyl, and phenanthrene-with and without the presence of natural organic matter (NOM). Adsorption rates were increased for adsorption onto S-PAC as compared to PAC in all trials without NOM and in most trials with NOM. Faster adsorption onto S-PAC was found to be a result of a smaller particle size, lower surface oxygen content, larger pore diameters, and neutral pHPZC. Adsorption of a planar compound, phenanthrene, increased the most between PAC and S-PAC, while adsorption of 2-phenylphenol, a nonplanar compound, was impacted the least. Phenanthrene additionally was minimally impacted by the presence of NOM while 2-phenylphenol adsorption declined severely in the presence of NOM.Nitrate pollution presents a serious threat to the environment and public health. As an excellent heterotrophic denitrification carbon source, banana peel (a kind of agricultural waste) provides a feasible alternative to deal with the persistent high concentrations of nitrate pollution. Although the feasibility and economy of banana peel for denitrification have already been reported, the long-term stability and mechanism were still unclear. The coupling mechanism of organic matters and microorganism in the denitrification process was systematically investigated through a 17-cycle experiment. The results showed that significant NO3--N removal load and rate of 164.42 mg/g and 4.69 mg/(L·h) after long-term tests could be obtained. Organic matter analysis and 16S rRNA sequencing showed that the evolution of organic matter was dominated by Anaerolineaceae (fermenting bacteria), and, in the final step, the humification of organic matter was realized. Moreover, the presence of Lentimicrobium (denitrifying bacteria) was indispensable for the continuous removal of high concentrations of nitrate. The main functional gene of nitrogen transformation in this reaction system was NirS (haem-containing). This lab-scale heterotrophic denitrification process could contribute to a better understanding of the carbon and nitrogen cycles in the biogeochemical cycles to some extent, and it also provides a reference for the construction of highly efficient nitrate degradation reactors, based on agricultural wastes.Aerated lagoons, typically used by small communities, often provide limited removal of wastewater nutrients. Given increasingly stringent wastewater standards, it is imperative that effective, but economical and easy-to-operate, treatment technologies be developed. The Submerged Attached Growth Reactor (SAGR®) is a treatment process developed to perform nitrification near freezing temperatures. Previous tests on full-scale installations have shown that SAGR could consistently remove ammonia to below current Canadian standards and provide additional total suspended solids and biochemical oxygen demand removal. Epigenetic inhibitor order In this study, we evaluated removal of polar chemicals of emerging concern (CECs), including pharmaceuticals, personal care products, and pesticides, at SAGR installations in two Manitoba First Nations communities (MCN and LPFN) under cold winter conditions. Both showed some removal of diclofenac, naproxen, clarithromycin, metoprolol, and trimethoprim, likely by biotransformation. Average naproxen removal was 21% (2.53 × 103 ng L-1) in MCN and 64% (1.58 × 103 ng L-1) in LPFN. Atenolol was well-removed by SAGR, by 80% on average (range of 64%-94%). Clarithromycin, metoprolol, and trimethoprim removal was similar within and between systems, ranging from 54% to 76% (30.8-3.07 × 102 ng L-1 removed). Carbamazepine was detected in nearly all samples, but was not well-removed, consistent with other treatment studies. Overall, results showed that SAGR technology could moderately remove CECs, while providing the designed treatment performance for other parameters. This work will help to improve our understanding of wastewater treatment in small and/or remote communities with limited infrastructure and challenging cold-weather conditions.An unprecedented rise in population growth and rapid worldwide industrial development are associated with the increasing discharge of a range of toxic and baleful compounds. These toxic pollutants including dyes, endocrine-disrupters, heavy metals, personal care products, and pharmaceuticals are destructing nature's balance and intensifying environmental toxicity at a disquieting rate. Therefore, finding better, novel and more environmentally sound approaches for wastewater remediation are of great importance. Nanoscale materials have opened up some new horizons in various fields of science and technology. Among a range of treatment technologies, nanostructured materials have recently received incredible interest as an emerging platform for wastewater remediation owing to their exceptional surface-area-to-volume ratio, unique electrical and chemical properties, quantum size effects, high scalability, and tunable surface functionalities. An array of nanomaterials including noble metal-based nanostructures, transition metal oxide nanomaterials, carbon-based nanomaterials, carbon nanotubes, and graphene/graphene oxide nanomaterials to their novel nanocomposites and nanoconjugates have been attempted as the promising catalysts to overcome environmental dilemmas. In this review, we summarized recent advances in nanostructured materials that are particularly engineered for the remediation of environmental contaminants. The toxicity of various classes of relevant tailored nanomaterials towards human health and the ecosystem along with perspectives is also presented. In our opinion, an overview of the up-to-date advancements on this emerging topic may provide new ideas and thoughts for engineering low-cost and highly-efficient nanostructured materials for the abatement of recalcitrant pollutants for a sustainable environment.
My Website: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team