Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Skin model cultivation under static conditions limits the observation of the toxicity to this single organ. Biology-inspired microphysiological systems associating skin with a liver in the same circulating medium provide a more comprehensive insight into systemic substance toxicity; however, its advantages or limitations for topical substance toxicity remain unknown. Herein, we performed topical (OECD test guideline no. 439) and systemic administration of terbinafine in reconstructed human skin (RHS) vs. a RHS plus liver model cultured in TissUse' HUMIMIC Chip2 (Chip2). Aiming for a more detailed insight into the cutaneous substance irritancy/toxicity, we assessed more than the MTT cell viability lactate dehydrogenase (LDH), lactate and glucose levels, as well as inherent gene expressions. Sodium dodecyl sulfate (SDS) was the topical irritant positive control. We confirmed SDS irritancy in both static RHS and Chip2 culture by the damage in the morphology, reduction in the lactate production and lower glucose ination of the RHS and liver model in the Chip2 allowed a more sensitive assessment of skin and hepatic effects caused by chemicals able to pass the skin (5% terbinafine and SDS) and after systemic 0.1% terbinafine application. The present study opens up a more complex approach based on the microphysiological system to assess more than a skin irritation process.This study reports the development and characterization of taste masked, freeze-dried composite wafers for potential oral and buccal delivery of low dose aspirin (acetylsalicylic acid) to prevent thrombosis in elderly patients with dysphagia. The wafers were formulated by combining metolose (MET) with carrageenan (CAR), MET with chitosan (CS) at low molecular weight or CAR with CS using 45% v/v ethanol as solvent for complete solubilization of acetylsalicylic acid. Each wafer contained 75 mg of acetylsalicylic acid and sweetener (sucralose, stevia or aspartame) with a drug sweetener ratio of 11 w/w. The formulations were characterized for physical properties using texture analyzer (hardness and mucoadhesion), scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, swelling capacity, and in vitro drug dissolution. Further, permeation studies with three different models (Permeapad™ artificial barrier, EpiOral™ and porcine buccal mucosa) using HPLC, cell vi of acetylsalicylic acid in geriatric patients with dysphagia.Poor aqueous solubility of terpenophenolic compound Cannabidiol (CBD) is a major issue in the widespread use of this promising therapeutic polyphenol. Moreover, choosing the appropriate strategy to overcome this challenge is time-consuming and based on trial-error processes. The amorphous form of CBD provided higher aqueous solubility as well as faster dissolution rate in comparison with crystalline CBD. Nevertheless, amorphous forms of CBD tend to recrystallize. The aim of this study was to use three different strategies based on the stabilization of the amorphous form. Cyclodextrins (CH3αCD, HPβCD and HPγCD.), mesoporous silicas (Silsol® and Syloid® AL-1FP) and water soluble polymers (Kollidon® VA64, Kollidon® 12PF and Soluplus®) were processed by using the following techniques freeze-drying, spray-drying, subcritical carbon dioxide impregnation or hot-melt extrusion. All the obtained formulations provided complete amorphous CBD, although the drug loading depend highly of the excipients. CBD-cyclodextrin formulations, processed by freeze-drying or spray-drying, and CBD-mesoporous silica formulations, processed by subcritical CO2 or by atmospheric impregnation, provided significant increase of aqueous solubility. While the use of Kollidon® 12PF did not provided significant increased solubility within 90 min, Kollidon® VA64 has been highlighted as the excipient that exhibits the highest increase of aqueous solubility of this study. Finally, all formulations, excepted CBD-ALFP formulations, showed adequate stability within at least two months.
The periodontal ligament (PDL), which surrounds the tooth root, contains mesenchymal stem cells (MSCs) capable of differentiating into osteoblasts, cementoblasts, and fibroblasts under normal conditions. These MSCs are thought to have important roles in the repair and regeneration of injured periodontal tissues. However, since there is no useful marker for MSCs in the PDL, the characteristics and distributions of these cells remain unclear. Gli1, an essential hedgehog signaling transcription factor, functions in undifferentiated cells during embryogenesis. Previous studies have demonstrated that the dental epithelial and mesenchymal cells positive for Gli1 in developing teeth have stem cell properties, including the ability to form colonies and pluripotency. Therefore, the focus of this review is the stem cell properties of Gli1-positive cells in the PDL, with an emphasis on the differentiation ability of osteoblasts for the regeneration of periodontal tissues.
Lineage tracing analysis identified Gli1-positive PDL cells as MSCs that contribute to the formation of periodontal tissues and can regenerate alveolar bone.
Gli1 is a potential stem cell marker in the PDL. A more definitive understanding of the functions of Gli1-positive cells could be useful for the development of regenerative methods using the MSCs in the PDL.
Gli1 is a potential stem cell marker in the PDL. A more definitive understanding of the functions of Gli1-positive cells could be useful for the development of regenerative methods using the MSCs in the PDL.
To evaluate the results of inferior oblique anteriorization for the treatment of large-angle hypertropia secondary to superior oblique palsy and to determine predictors of success and the occurrence of antielevation syndrome.
In this prospective study, 25 patients with unilateral congenital and acquired superior oblique palsy who had a primary position hypertropia of at least 25
underwent inferior oblique anteriorization in the paretic eye. Postoperative changes in vertical deviation of primary position and contralateral gaze, abnormal head posture, extorsion, associated horizontal deviation, inferior oblique overaction, superior oblique underaction, and elevation in abduction were examined. Surgical success was defined as residual hypertropia in primary position of ≤4
at final examination.
The mean age of patients at surgery was 19.8±11.9years (range, 4-49). Epacadostat molecular weight The mean preoperative deviation in the primary position was 27.6
± 3.2
; in contralateral gaze, 35.0
± 3.8
; these measurements decreased postoperatively to 4.
Read More: https://www.selleckchem.com/products/epacadostat-incb024360.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team