Notes
![]() ![]() Notes - notes.io |
Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts. We analyzed historical data from nutrient bioassay experiments (1992-2002) and data from long-term, fixed-site water-quality monitoring program (1990-2017) to develop empirical approaches for predicting nutrient limitation in the surface waters of the mainstem Bay. Results from classification and regression trees (CART) matched the seasonal and spatial patterns of bioassay-based nutrient limitation in the 1992-2002 period much better than two simpler, non-statistical approaches. An ensemble approach of three selected CART models satisfactorily reproduced the bioassay-based results (classification rate = 99%). This empirical approach can be used to characterize nutrient limitation from long-term water-quality monitoring data on much broader geographic and temporal scales than would be feasible using bioassays, providing a new tool for informing water-quality management. Results from our application of the approach to 21 tidal monitoring stations for the period of 2007-2017 showed modest changes in nutrient limitation patterns, with expanded areas of nitrogen-limitation and contracted areas of nutrient saturation (i.e., not limited by nitrogen or phosphorus). These changes imply that long-term reductions in nitrogen load have led to expanded areas with nutrient-limited phytoplankton growth in the Bay, reflecting long-term water-quality improvements in the context of nutrient enrichment. However, nutrient limitation patterns remain unchanged in the majority of the mainstem, suggesting that nutrient loads should be further reduced to achieve a less nutrient-saturated ecosystem.Sulfamethoxazole (SMX) is the most widely distributed sulfonamide antibiotics detected in decentralized poultry wastewater in rural communities. As an economically-feasible and eco-friendly technology for decentralized wastewater treatment in rural areas, vertical-flow multi-soil-layering (MSL) system was promising to mitigate the ecological and human health risks from SMX in such areas. The treatment of SMX-contained poultry wastewater by using MSL systems was investigated for the first time, and the main and interactive effects of related multiple variables on system performance were explored through factorial analysis, including material of permeable layer, concentration of SMX, and pH of influent. Results indicated that SMX concentration and pH of influent showed significantly negative effects on SMX removal. #link# Medical stone used in MSL systems with larger surface area could intensify the SMX removal compared to anthracite. MSL systems showed stable performances on SMX removal with the best SMX removal efficiency more than 91%. A novel stepwise-cluster inference (SCI) model was developed for the first time to map the multivariate numeric relationships between state variables and SMX removal under discrete and nonlinear complexities. It was demonstrated that the effect of SMX in wastewater with high concentration was significant on the differentiation of soil bacteria composition in MSL systems based on microbial diversity analysis. These results can help better understand the mechanism of SMX removal in MSL systems from perspectives of factorial analysis, numeric modeling, and microbiological change.Biofilm attachment and growth in membrane filtration systems are considerably influenced by the localized flow inside the feed channel. The present work aims to map the biofilm attachment/growth mechanism under varying flow conditions. Effect of varying clearance region (space between the spacer filament and membrane surface) on biofouling pattern is investigated by using three 3D-printed pillar spacers having different filament diameters of 340, 500, and 1000 µm while maintaining the same pillar orientation, diameter and height. Direct Numerical Simulations (DNS) and Optical Coherence Tomography (OCT) were carried out to accurately predict the local hydrodynamics behavior and in-situ monitor the biofilm formation. On spacer filaments, biofouling attachment is primarily observed in the regions where low and non-fluctuating shear stresses are present. Conversely, on membrane surface, highest biofouling attachment was observed under spacer filaments where high shear stresses are prevalent along with low clearance height. Furthermore, as filtration time progresses, the biofilm grows faster on the membrane in the center of spacer cells where low shear stress with steady hydrodynamics conditions are prevalent. The proposed hydrodynamics approach envisages a full spectrum of spacer design constraints that can lead to intrinsic biofilm mitigation while improving filtration performance of membranes based water treatment.
Uninterrupted drug therapy during acute illness is often associated with pharmacokinetic and pharmacodynamic variations. Among warfarin treated patients, these changes are reflected in the INR. However, in the case of direct oral anticoagulants (DOACs), given that routine laboratory monitoring is not recommended, these changes may result in unforeseen thromboembolic or bleeding events.
To determine the rate of thromboembolic (TEE) and bleeding events associated with uninterrupted DOAC compared to warfarin treatment during acute illness.
A retrospective cohort study of patients treated with DOACs or warfarin, both at steady state, who were hospitalized for acute illness. Primary outcome was any TEE or major bleeding requiring re-hospitalization within one month from discharge. Secondary outcome was a composite of major bleeding and clinically relevant non-major bleeding (CRNMB) events.
A total of 410 patients continued oral anticoagulant treatment during their hospitalization, of whom 191 (46.6%) were on DOACs and 219 (53.4%) on warfarin, with a total of 18 (4.4%) events. Rates of TEE and major bleeding events did not differ between DOACs and warfarin treated patients (0.9% vs. 0.5% and 0.5% vs. 1%, respectively). Similarly, rate of secondary outcome was comparable between DOACs (4.7%) and warfarin (2.7%, p=0.29). Sub-analyses demonstrated significantly higher rates among rivaroxaban (10.4%) treated patients compared to warfarin (p=0.03).
see more with DOACs during acute illness is not associated with increased risk for re-hospitalizations due to bleeding or thromboembolic events compared to warfarin. Our results suggest a higher bleeding rate among rivaroxaban treated patients at high bleeding risk.
Uninterrupted treatment with DOACs during acute illness is not associated with increased risk for re-hospitalizations due to bleeding or thromboembolic events compared to warfarin. Our results suggest a higher bleeding rate among rivaroxaban treated patients at high bleeding risk.
Homepage: https://www.selleckchem.com/products/ezatiostat.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team