Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
01 to 0.49 mg/L. The highest Mn values in the water (total Mn 6.57 mg/L and soluble-colloidal Mn 0.49 mg/L) were detected in tributary rivers near industrial discharge sites. The concentration in water compared with that in sediments (160-213,867 mg/kg) and fish (viscera 5-5236 mg/kg and muscle 10.7-398.8 mg/kg) indicates low solubility of this mineral. The geoaccumulation index (Igeo) and contamination factor (CF) show that sediment composition has been affected.We investigated changes in protozoa and metazoa community in relation to process parameters in activated sludge from four wastewater treatment plants (WWTPs) throughout the period of 1 year. Principal component analysis (PCA) showed that activated sludge from investigated treatment plants had different dominating species representatives and community composition mainly depends on individual features of the treatment plants. Redundancy analysis (RDA) showed that the temperature in bioreactors was the most relevant factor explaining changes in the microorganism community, whereas reduction rate of chemical oxygen demand (COD), biological oxygen demand (BOD5), suspended solids (SS), and total nitrogen (TN) did not sufficiently explain the variation in protozoa and metazoan community composition. The results indicate that in stable working WWTP it is difficult to find a pronounced link between activated sludge species composition, process parameters, and plant configuration. Applied multivariate analysis can be a valuable tool for the exploration of the relations between community composition and WWTP process parameters.In this work, we employed the in situ synthesis method to implant Fe3O4 into activated carbon (AC), in which the synthesis of the magnetic AC (MAC) was realized. Thence, Ni-doped anatase TiO2 (NATiO2) were anchored on different addition amount of MAC to synthesize the series of Ni-TiO2/MAC photocatalysts. The chemical compositions and physical properties of these nanocomposites were analyzed by various characterization technologies. The photocatalytic capabilities of as-produced materials were then investigated via adsorption and photodegradation of triphenylmethane dyes (TPMs) as crystal violet (CV), basic fuchsine (BF), and malachite green (MG) solution. The results revealed that the removal of Ni-TiO2/AC, Ni-TiO2/2MAC, Ni-TiO2/4MAC, and Ni-TiO2/8MAC on TPMs is a very fast process and the removal efficiency can almost reach to about 90% in 10 min, and the catalyst has good cycle stability and is easy to be reused. This work provides a novel, low-cost, and effective way to rationally design and synthesize TiO2-based photocatalysts for effective removal of TPMs.A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. selleck chemicals Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.Considering one health concept, human health is thought to be affected by many factors. Heavy metal toxicity is now gaining its place as one of the major factors contributing to detrimental outcomes for human health. The study encompassed to target sites close to the industrial area of Lahore where heavy metal levels are believed to be higher, as industrial waste is drained into the two main drains. Sheep and goats (n = 5 from each species) reared in the locality were included in the study, and effects of heavy metal toxicity were evaluated in the selected organs (intestine, kidneys, liver, and muscles) via histopathological examination along with residual concentration of these heavy metals in the aforementioned organs. Heavy metals chromium, copper, zinc, lead, iron, magnesium, manganese, and nickel were detected in sample of selected organs by atomic absorption spectrometry (AAS) along with digestion method. The findings of the study indicated a statistically significant difference of residual concentrations of almost all the selected elements in almost all the tissue samples between the two sites where the values of site 1 (close to the drain) were higher compared with site 2 (away from the drain). Similar trend was depicted in histopathological examination where a higher degree of tissue degeneration, necrosis, and hence organ damage was observed in tissue samples collected from site 1 compared with site 2.CuSe as an excellent photocatalytic semiconductor material has wildly used in the field of photocatalysis. In this paper, CuSe-PDA/g-C3N4 was designed and synthesized, and the photocatalytic performance of CuSe was further enhanced by the addition of polydopamine (PDA) and graphite phase carbon nitride (g-C3N4). The as-prepared CuSe-PDA/g-C3N4 was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and elemental mapping. The specific surface area and porous characteristics of the material were also studied by N2 adsorption-desorption isotherm, which the specific surface area were 186.6 m2/g and pore size were of 3.1 nm by BET data analysis. The photocatalytic conditions for the degradation of methylene blue (MB) by CuSe-PDA/g-C3N4 were optimized in the experiment. The results showed that the photocatalytic performance of CuSe-PDA/g-C3N4 under visible-light illumination were better than CuSe and PDA owing to the narrow band gap energy and delayed electron-hole recombination.
Read More: https://www.selleckchem.com/products/prostaglandin-e2-cervidil.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team