Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In this study, a proportional - integral feedback control system was implemented on a lab-scale differential biofilter to control the gas phase toluene concentration in the soil bed through online manipulation of the inlet toluene concentration. The feedback control system was based on a cascade controller that manipulated the setpoint of an air bath diffusion system to manipulate the inlet toluene concentration. The controller performed well for toluene concentrations in the reactor of 10 - 300 ppm for both setpoint changes and disturbance rejections; however, the system was nonlinear requiring different tuning parameters at different outlet concentrations. Feedback control of the toluene concentration in the differential reactor was used to explore the impact of concentration on start-up and long-term biofilter operation in a rigorous fashion. Starting at an reactor concentration of 20 ppm and then increasing to 65 ppm increased the toluene removal rate (33 ± 1.6 g m-3h-1) compared to starting the reactor at an outlet concentration of 81 ppm before settling at 65 ppm (42 ± 0.9 g m- 3h-1). The toluene removal rate increased with increasing outlet toluene concentration and then eventually decreased when reaching the inhibitory toluene concentration (ranged from 80 to 250 ppm).The dismantling of electrical and electronic waste (e-waste) can release various Volatile organic compounds (VOCs), impacting the surrounding ambient environment. We investigated the spatio-temporal characteristics and health risks of the ambient VOCs emitted in a typical e-waste dismantling region by conducting multi-site sampling campaigns in four seasons. The pollution of benzene, toluene, ethylbenzene, and xylenes (BTEX) in the e-waste dismantling park has relation to e-waste dismantling by seasonal trend analysis. The highest concentrations of most VOCs occurred in winter and autumn, while the lowest levels were observed in summer and spring. The spatial distribution map revealed the e-waste dismantling park to be a hotspot of BTEX, 1,2-dichloropropane (1,2-DCP), and 1,2-dichloroethane (1,2-DCA), while two major residential areas were also the hotspots of BTEX. The e-waste emission source contributed 20.14% to the total VOCs in the e-waste dismantling park, while it was absent in the major residential and rural areas. The cancer risk assessment showed that six VOCs exceeded 1.0 × 10-6 in the e-waste dismantling park, while only three or four compounds exceeded this risk in other areas. The noncancer risks of all compounds were below the safety threshold. This study supplements the existing knowledge on VOC pollution from e-waste dismantling and expands the research scope of chemical pollution caused by e-waste.Ionic liquids (ILs1) which are called "green solvents", are used widely in the textile industry as adjuvants due to their many advantages. However, their persistent residues may cause ecotoxicity. The aim of the study is to explore the toxicity of different anions on imidazole ILs and their toxicological mechanism. For the experiments 1-butyl-3-methylimidazole tetrafloroborate ([C4mim]BF4) and 1- butyl -3-methylimidazolium chloride ([C4mim]Cl) were selected to study their toxic effects on Isatis tinctoria. ILs may affect the germination rate. Fresh weight, dry weight and Hill reaction activity decreased continuously with increasing of IL concentrations, showing an effect-dose relationship. Transmission electron microscopy (TEM) revealed that cell walls were fuzzy, starch granules had accumulated and the chloroplast structure was damaged. These changes will affected the function and electron transport efficiency of photosystemⅡ. Superoxide anion accumulation stimulated the activity of antioxidant enzymes (SOD, POD, CAT) and caused lipid peroxidation as well as an increased malondialdehyde content. ILs also reduced indirubin and total flavonoids contents, which reduced the pharmacological efficacy of Isatis tinctoria. This is demonstrated by three-dimensional fluorescence chromatogram. [C4mim]Cl was more toxic than [C4mim]BF4. ILs caused toxic effects to Isatis tinctoria. The ecological toxicity of ILs should be considered when using them as additives in the textile industry.Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 μg g-1 in plants and 75-150 μg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical ( less then 20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.Monitoring fouling behavior for better understanding and control has recently gained increasing attention. PF-3644022 solubility dmso However, there is no practical method for observing membrane fouling in real time, especially in the forward osmosis (FO) process. In this article, we used the optical coherence tomography (OCT) technique to conduct real-time monitoring of the membrane fouling layer in the FO process. Fouling tendency of the FO membrane was observed at four distinguished stages for 21 days using a regular membrane cleaning method. In this method, chemical cleaning, which extracts two to three times as much organic matter (OM) as physical cleaning, was used as an effective method. Real-time OCT image observations indicated that a thin, dense, and flat fouling layer was formed (initial stage). On the other hand, a fouling layer with a thick and rough surface was formed later (final stage). A deep learning convolutional neural network model was developed to predict membrane fouling characteristics based on a dataset of real-time fouling images.
Here's my website: https://www.selleckchem.com/products/pf-3644022.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team