Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A precise and fast optical thermometer based on a tunable diode laser absorption spectroscopy is developed for breath diagnostics with relevance to noncontact body temperature measurement. As water vapor (H2O) is the major component in human breath, two optimal absorption lines of H2O at 1392 nm and 1371 nm are selected for sensitive body temperature measurement by systematically investigating the near-infrared spectral database. The optical thermometer is developed using two distributed feedback diode lasers with the time-division multiplexing technique to achieve real-time measurement. The sensor performance such as accuracy, repeatability, and time response is tested in a custom-designed gas cell with its temperature controlled in the range of 20°C-50°C. By measuring the test air with different water concentrations, the sensor consistently shows a quadratic response to temperature with an R-squared value of 0.9998. Under the readout rate of 1 s, the sensor achieves a measurement precision of 0.16°C, suggesting its potential applications to fast, accurate, and noncontact body temperature measurements.With experimental validation, an analytical exploration of a surface-plasmon-resonance- and evanescent-wave-based fiber optic biosensor, using Bessel-Gauss beams for early detection of breast cancer, is proposed and designed here. The observed sensitivity is 0.58 nm/ng/mL and 11,928.25 dB/RIU with a resolution of 8.38×10-7, which is 10 times better than the reported ray-theory-based articles reported to date using a Gaussian beam. To analyze more effectively the higher-order modes and to achieve more similarity between the analytical and experimental solutions, the wave-theory-based approach is adopted here. With this approach, for the first time to our knowledge using a Bessel-Gauss beam, higher sensitivity is achieved for fiber optic breast cancer detection. The enhanced sensitivity at lower concentrations of the Human Epidermal Growth Factor Receptor 2 biomarker has conceptualized the idea of early detection of breast cancer by optically quantifying the earlier stage of cancer.In order to address the fusion problem of infrared (IR) and visible images, this paper proposes a method using a local non-subsampled shearlet transform (LNSST) based on a generative adversarial network (GAN). We first decompose the source images into basic images and salient images by LNSST, then use two GANs fuse basic images and salient images. Lastly, we compose the fused basic images and salient images by inverse LNSST. We adopt public data sets to verify our method and by comparing with eight objective evaluation parameters obtained by 10 other methods. It is demonstrated that our method is able to achieve better performance than the state of the art on preserving both texture details and thermal information.A three-dimensional (3D) measurement method of color fringe projection based on an improved three-step phase-shifting method is proposed. The color fringe pattern is encoded by two cosine fringe patterns with the same frequency but different shifting phase and a uniform gray flat image into three color channels R, G, and B. Although the measurement speed of the traditional three-step phase-shifting method can meet the requirements of measuring 3D objects, it makes the noise and inaccuracy of the captured images increase, and each image will cause measurement error. Therefore, we improve the three-step phase-shifting method and introduce the Hilbert transform into the three-step phase-shift method. The DC component of the fringe pattern is obtained by using the Hilbert transform principle, and the third fringe pattern in the three-step phase-shift method is replaced by the captured light intensity distribution of the DC component. The phase difference of the other two fringe patterns is fixed as π/2 by the Hilbert transform. The improved three-step phase-shifting method is used to obtain the phase information of the deformed color fringe image, and then the phase-unwrapping algorithm is used to obtain the phase distribution information of the whole field. The results show that the improved method can not only accurately calculate the phase information but also greatly improve the measurement speed and quality.Analyzing optical antenna systems through geometrical optics is quite popular for its convenience, which, however, may cause remarkable errors. selleck chemicals llc This paper uses both geometrical optics and diffraction theory to analyze the performance of a traditional optical antenna system, and the results calculated through the two methods are carefully compared. Based on the comparison, it shows the situations in which geometric optics will cause significant errors. In addition, a parameter γ is defined to quickly determine whether geometrical optics is suitable for analyzing optical antenna systems under some situations. This paper can help engineers quickly choose the proper method for designing and analyzing optical antenna systems.To determine the methods of color measurement and color-difference calculation for holographic prints with light pillars, 94 pairs of holographic prints constituted by 17 different products were collected. A set of color-difference comparison experiments was organized by 64 observers with normal color vision, and a total of 86 groups of visual judgments were gathered. The CIELAB and CIEDE2000 color-difference values were calculated on the basis of the analysis of the microstructures of gratings distributed on the holographic paper. The performances of the original formulas were evaluated in terms of the standardized residual sum of squares index, and then they were optimized considering the power function effects (a, b factors) together with a contribution from lightness (kL factor). Meanwhile, the color-difference threshold of the holographic prints was estimated with a goal to minimize the number of wrong decision in the visual experiment; therefore, the values were set as 2.50 and 2.00 for the original CIELAB and CIEDE2000 with the consistency of 91.5% and 98.9%, respectively. The results can also provide guidance to evaluate the color quality of the holographic prints with light pillars in the packaging and printing industries.In this study, we identify a seasonal bias in the ocean color satellite-derived remote sensing reflectances (Rrs(λ);sr-1) at the ocean color validation site, Marine Optical BuoY. The seasonal bias in Rrs(λ) is present to varying degrees in all ocean color satellites examined, including the Visible Infrared Imaging Radiometer Suite, Sea-Viewing Wide Field-of-View Sensor, and Moderate Resolution Imaging Spectrometer. The relative bias in Rrs has spectral dependence. Products derived from Rrs(λ) are affected by the bias to varying degrees, with particulate backscattering varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from phytoplankton or dissolved material varying by up to 15%. The propagation of Rrs(λ) bias into derived products is broadly confirmed on regional and global scales using Argo floats and data from the cloud-aerosol lidar with orthogonal polarization instrument aboard the cloud-aerosol lidar and infrared pathfinder satellite. The artifactual seasonality in ocean color is prominent in areas of low biomass (i.e., subtropical gyres) and is not easily discerned in areas of high biomass. While we have eliminated several candidates that could cause the biases in Rrs(λ), there are still outstanding questions regarding potential contributions from atmospheric corrections. Specifically, we provide evidence that the aquatic bidirectional reflectance distribution function may in part cause the observed seasonal bias, but this does not preclude an additional effect of the aerosol estimation. Our investigation highlights the contributions that atmospheric correction schemes can make in introducing biases in Rrs(λ), and we recommend more simulations to discern these influence Rrs(λ) biases. Community efforts are needed to find the root cause of the seasonal bias because all past, present, and future data are, or will be, affected until a solution is implemented.Digital light processing (DLP) is currently a cutting-edge technology for desktop projection optical engines. Due to the passive luminescence characteristics, the DLP projection engine needs a few specific illumination optical components for light collimation, homogenization, and color combination, together with a projection lens matching the DLP chip and magnifying the image. In this paper, we propose a design approach that first splits the DLP projection optical engine into individual components for separate design, and then integrates them into a whole system for further verification. For the first step, the collimating lens group is designed for light collection, and the dichroic mirrors are used to fold the light path based on tri-color LED light sources. For the second step, a fly-eye lens and the corresponding relay lens group are designed to achieve uniform illumination on the DMD chip. The third step is to optimize the projection lens group for high-resolution projection display. Based on the design and simulation, the optical efficiency is 63.4% and the uniformity reaches 94.9% on the projection screen. The modulation transfer function (MTF) of the projection lens is higher than 0.4 at 66 lines for the distance of 500∼1500mm, and the distortion is lower than 1%. Simulation results show that the total luminous flux is estimated to reach 224.15 lm when the powers of tri-color LEDs are 21 W, 15.5 W, and 25 W, respectively. A projector prototype is built and tested for further verification, which provides a luminous flux of 220.43 lm and uniformity of 90.22%, respectively. The proposed design, demonstrated by both simulation and experiment, exhibits high feasibility and application potential in state-of-the-art commercial projector design.Broadband vibrational/rotational Raman generation ranging from deep ultraviolet (DUV) to blue wavelengths is demonstrated by using molecular hydrogen in a hollow-core waveguide as a Raman-active medium pumped by a femtosecond DUV laser. We find the high-order transient stimulated Raman scattering is drastically enhanced for input beams including a circularly polarized component; a circularly polarized input beam achieves the highest conversion efficiency. Coherent vibrational anti-Stokes Raman emission is observed only for a circularly polarized pump beam, indicating that the waveguide effect also contributes to the upconversion of a DUV pulse via transient stimulated Raman scattering.An underwater optical imaging system is indispensable for many oceanic engineering tasks, yet still plagued by poor visibility conditions. The serious degradation of underwater image results from light scattering and absorption. Removal of the backscattered light is the focus issue of underwater imaging technology to improve the image visibility, particularly in turbid water. In this paper, we present an approach for underwater image recovery using structured light imaging and flood light imaging to compose a combined imaging model with which the backscatter component is completely offset. The convolutional image is obtained using the structured light scanning imaging mode where the backscatter intensity is proportional to that of the flood light image with an unknown scale parameter. An algorithm to refine the matching of the backscatter components of both the convolutional image and the flood light image is proposed. Thus, subtraction of both images gives rise the combined imaging model without the backscatter component.
Here's my website: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team